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1 INTRODUCTION 
This report documents the Travel Demand Model (TDM) development, application, and validation process 
for the Mid-State Corridor Study. This regional travel demand model is a key tool to analyze travel 
patterns, origin-destination (O-D) trip patterns and project benefits. It emphasizes travel within the 12-
county Study Area. It also forecasts travel between the Study Area and significant portions of Indiana, 
Kentucky, and Tennessee. Figure 1-1 shows the 12-county Study Area and the model boundaries. 

 

Figure 1-1:  Travel Model and Study Area Boundaries 

The model was developed as a three-step travel demand model. A three-step travel model is an 
abbreviated version of the traditional four-step travel demand model. Primary steps of a four-step travel 
model include: trip generation, trip distribution, mode choice, and traffic assignment. In a three-step travel 
model, mode choice step from the four-step model is omitted. The study area is nearly entirely rural. 
Automobile is the highly predominant travel mode. There is negligible use of other travel modes (e.g., 
walking, biking, and transit).       
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2 TRAVEL DEMAND MODEL 
ASSUMPTIONS AND 
COORDINATION 

This section highlights major assumptions in the TDM development. It also documents model 
development coordination among INDOT, FHWA, local municipalities, and regional stakeholders.  

Any TDM requires two large sets of input data. These data sets provide demand input and supply input. A 
travel model basically is an economic forecasting model. It uses standard economic relationships to 
forecast travel flows as the equilibrium between transportation supply and transportation demand. 

Demand information includes socioeconomic data (e.g., population, household sizes, employment, 
income levels, etc.). These socioeconomic data determine demand for trips (types and number) within 
the modeled region. 

Supply information includes the transportation facilities and conveyances on which travel occurs. In multi-
modal models, these facilities and conveyances can include transit facilities and bus routes, rail facilities, 
etc. in addition to roads. 

 

2.1 TDM Base Year 
The base year model forecasts existing travel. A primary purpose for providing a base year travel model is 
to assess the ability of the travel model to accurately replicate travel flows. A travel model includes many 
detailed mathematical relationships to forecast travel demand based upon the region’s socio-economic 
makeup (demand), the capacity of the transportation network to accommodate desired travel (supply), 
and achieving an equilibrium between supply and demand. These mathematical relationships include 
variable parameters (such as coefficients in a mathematical model). During the model development 
process (described in Section 5) these parameters are adjusted so that the base year model “predicts the 
present” within accepted model development standards. Once a model provides acceptable predictions 
of base year flows, it can serve as a basis for predicting future year travel flows. 

Selecting the TDM base year considers the most current reliable socio-economic data and travel/traffic 
flows. As described in Section 5, traffic counts are used to assess the ability of the model to “predict the 
present.” The base year for Mid-State TDM is 2017. This was the most recent year with suitable availability 
of socioeconomic data and traffic counts from federal and state level sources.   

 

2.2 TDM Forecast Year 
The Mid-State TDM forecast year is 2045. Traffic projections for forecast (horizon) year are used to 
evaluate network and traffic operational conditions and to identify future capacity needs in the regional 
highway network. 
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2.3 Existing and Committed Projects 
For the forecast year 2045, a no-build highway network is defined as the base year highway network plus 
committed projects. “Committed” projects are funded transportation projects programmed for 
construction in the state DOTs’ fiscally constraint transportation plans. For the Mid-State TDM no-build 
network, committed projects were added from the 2045 highway networks of Indiana, Kentucky, and 
Tennessee statewide model highway networks. The 2045 horizon year model for the Evansville MPO 
(EMPO) and the 2040 horizon year model for the Kentuckiana Regional Planning and Development Agency 
(KIPDA) also were checked. Details of future year tolls and highway capacities crossing the Ohio River were 
added from the EMPO model. 

2.4 Induced Growth Allocation Panel  
TREDIS forecasts for each alternative forecasted induced households and employment in the 2045 
forecast year for each alternative. These forecasts were for the entire 12-county study area. TREDIS runs 
for each alternative provided the amount of induced growth attributable to each alternative. 

The allocation exercise was performed by Land Use Review Team. The Team consisted of staff from a 
spectrum of engineering and planning disciplines. An important reference was Appendix U – Land Use 
Plan Review. Appendix U reviewed and summarized local and county land-use plans within the Study 
Area. It identified areas targeted for future development. 

The Team’s first step to identify counties where induced growth would occur. Generally, induced growth 
was forecasted to occur in counties where alternatives were located. For Alternative B and Alternative C, 
adjoining counties were identified as having the potential to receive induced growth. Counties identified 
as candidates to receive induced growth for each alternative were as follows: 

• Alternative B - Spencer, Dubois, Daviess, spillover to Pike 

• Alternative C - Spencer, Dubois, Daviess, spillover to Martin 

• Alternative M - Spencer, Dubois, Martin and Lawrence 

• Alternative O – Spencer, Dubois, Orange, Lawrence, Crawford 

• Alternative P – Spencer, Dubois, Martin, Daviess, Greene 

• Alternative R – Spencer, Dubois, Martin, Daviess, Greene 

Induced households and employment were allocated in increments of 10 to candidate counties. The 
information in Table 2-1 shows the results of this allocation. In some cases, no growth was allocated to 
counties identified as having potential to receive induced growth. Table 2-1 shows a “0” for these 
counties. 

For most alternatives, the number of induced jobs and households by county was similar. For these 
counties, a single allocation was made using the average number of induced households and jobs for the 
two facility types (Super-2 and Expressway). For Alternative P, the difference in induced households and 
jobs was different enough that a separate allocation was made for the two facility types. 
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Table 2-1: Allocation of Induced Growth by Alternative and County 

 

 

After this county level allocation was made, the Team made suballocations of induced growth to 
individual TAZs. These were based upon local and county land use plans cited above. 

2.5 Agency Coordination 
Project staff conferred with INDOT, FHWA and several MPOs throughout the TDM development process. 
For the Mid-States TDM TAZs in Indiana, 2045 socioeconomic projections (total population in 2045 and 
growth in employment from 2017 to 2045) were obtained from the ISTDM TAZs 2045 projections. The 
Mid-States TDM base highway network for Indiana was also based on ISTDM base highway network which 
was received from INDOT in October, 2019.  

Mid-States Tier 1 EIS staff also conferred with the following MPOs during the TDM development 
process. These contacts occurred between October of 2019 and January of 2020. Each MPO provided 
model network and TAZ information from its current travel forecasting model. 

• Evansville Metropolitan Planning Organization (EMPO) 
• Bloomington Monroe County Metropolitan Planning Organization (BMCMPO)  
• Kentuckiana Regional Planning and Development Agency (KIPDA) 

Initial contacts with INDOT Planning and Programming (P & P) occurred in early November, 2019. This was 
during the model development stage. At that time, Lochmueller Group stated its intent to assume I-69 
Ohio River crossings in Evansville would be non-tolled for the Screening of Alternatives, only. These 
assumptions would be revisited as model development continued. 

For the Mid-State TDM TAZs within the MPO boundaries cited above, 2045 ISTDM projections were 
compared with the MPOs’ socioeconomic projections and necessary adjustments were made when MPO 
projections were more reasonable. Staff communicated with INDOT P & P regarding updates to socio-
economic data for TAZs using MPO socio-economic information. A memo was sent to INDOT on February 
7, 2020 highlighting updated socio-economic information for some selected TAZs where socio-economic 
data from the MPOs were used instead of ISTDM information. INDOT P & P acknowledged and approved 
these modifications on February 24, 2020. 

County B C M O P2/RPA P2P3/RPA P3 R B C M O P2/RPA P2P3/RPA P3 R
Dubois 10 10 20 10 30 20 10 10 20 50 20 80 70 30
Pike 0 0
Martin 0 0 20 10 5 0 0 10 10 5
Orange 0 0
Daviess 0 10 0 0 0 10 10 0 0 0
Monroe
Greene 20 20 10 20 10 5
Warrick
Spencer 0 0 10 0 10 10 5 0 10 10 0 20 10 5
Perry
Crawford 0 0
Lawrence 20 10 20 10
 Total 10 20 50 20 80 60 30 20 40 80 30 130 100 45

Households Allocated by Alternative Jobs Allocated by Alternative



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 9 of 70 

 

Project staff conferred with INDOT while finalizing socio-economic forecasts for the TAZs within Indiana. 
Staff prepared a June 26, 2020 memo to INDOT’s P & P Division documenting the population and 
employment growth forecasts for the 12 counties within the Study Area. Staff received INDOT’s approval 
on July 20, 2020. The final population forecasts were taken from the ISTDM TAZ information, as modified 
to incorporate some MPO model forecasts. The final employment forecasts were based on employment 
data from the Longitudinal Employer-Household Dynamics dataset in the American Community Survey. 
The employment growth to 2045 was forecasted using the employment growth in the ISTDM between 
the base and forecast years. 

Project staff initially contacted the Kentucky Transportation Cabinet (KYTC) in May 2019 and requested 
TAZ, highway network and traffic count files from its statewide model. KYTC provided these files in August 
2019. 

Project staff contacted the Tennessee Department of Transportation (TDOT) in May 2019 and requested 
TAZ, highway network and traffic count files from its statewide model. TDOT provided this information in 
June 2019.  

Mid-States Tier 1 EIS staff conferred with FHWA regarding TDM development approach and methodology. 
Staff provided a June 25, 2019 memo to FHWA highlighting the TDM approach and methodology. Staff 
received FHWA’s reply on July 2, 2019. Mid-States EIS staff and FHWA had a follow up conference call on 
August 5, 2020 and reviewed the TDM approach and methodology in detail. FHWA Indiana Division and 
FHWA Resource Center staff participated in the meeting. TDM approach, methodology and land use 
forecasts were discussed. FHWA staff stated that the proposed approach would adequately address land 
use impacts of the proposed Mid-States alternatives.  

3 TRAVEL DEMAND MODEL 
STRUCTURE 

3.1 Network Development 
This section presents the development of the roadway network and attributes for the TDM. The areas of 
the Mid-State TDM geographic structure includes the following: 

• Twelve county Study Area in Indiana 
• Rest of Indiana within the TDM boundary 
• Portion of Kentucky within the TDM boundary 
• Portion of Tennessee within the TDM boundary 

Figure 3-1 on the next page shows the Mid-State TDM network structure for the base (2017) year.  
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3.1.1 12 County Study Area in Indiana 
For the 12 counties in the Mid-State study area, the roadway network was developed by using the INDOT’s 
Statewide Model (INSWM) roadway network (updated in 2019). Additional roadway links were considered 
for major population areas through careful evaluation of regional roadway networks in each county. 
Figure 3.2 shows new roadway links (in red) added for Jasper. Network not shown in the INSWM also was 
added in Huntingburg and Bedford. 

  

Figure 3-1: Mid-State TDM Base Year Network 
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Figure 3-2: Added Base Year Network in Jasper 

3.1.2 Rest of Indiana within the TDM Boundaries 
Roadway network for Indiana outside the 12-county region were developed using the INSWM roadway 
network.  

3.1.3 Portion of Kentucky within the TDM Boundaries 
The Mid-State TDM boundaries include a significant area in Kentucky. Kentucky Transportation Cabinet’s 
(KYTC) Statewide TDM roadway network was used to develop the roadway network for the model areas 
within Kentucky.  

3.1.4 Portion of Tennessee within the TDM Boundaries 
The Mid-State TDM includes some areas in Tennessee. Tennessee Department of Transportation’s (TDOT) 
TDM roadway network was used to develop the roadway network for the model areas within Tennessee.  

Roadway network from the three states were merged carefully to develop the combined Mid-State 
roadway network.  

3.1.5 Centroid Connectors 
Centroid connectors for the Mid-State TDM network were added to the roadway links by using automated 
TransCAD procedures. Centroid connector development included the following key considerations: 
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• Initial centroid connector generation process restricted centroid connectors to ensure that the 
connectors do not cross TAZ boundaries. 

• Centroid connectors were not permitted to connect to freeways, ramps, or one-way links. 
• Centroid connector lengths were restricted. The maximum length of a centroid connecter is 7.5 

miles. Within Indiana, the longest centroid connector is 7.5 miles. 
• Each TAZ was allowed to have a maximum of three centroid connectors. 

Careful manual review of TransCAD’s automated centroid connector generation process ensured that all 
TAZs have at least one centroid connector. Key attributes for the centroid connectors are shown in Table 
3.1-1.  

Table 3.1-1: Attributes of Centroid Connectors 

Attribute Description 
FCLASS 99 

THRU_LANES 20 
AB_LANES 10 
BA_LANES 10 
SPD_LIMIT 45 

MSFFS 45 
MSHRCAP 2000 

 



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 13 of 70 

 

Figure 3-3 shows centroid connectors in the roadway network in and near Jasper, Indiana.  

Figure 3-3: Centroid Connectors in Roadway Network in Jasper 
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3.1.6 Roadway Link Attributes 
Roadway link attributes were developed for the Mid-State TDM using information in roadway networks 
of the Indiana, Kentucky and Tennessee statewide models. The INSWM roadway network contained 
roadway functional class information following the prior (pre-2010) Federal Highway Administration’s 
(FHWA) functional classification system. All roadway links in Indiana were assigned appropriate functional 
classes following the current FHWA Roadway Functional Classification system. Table 3.2 shows the new 
and old FHWA roadway functional classes.  

Table 3.1-2: FHWA Functional Classes and Code Descriptions 

Functional Class New Code (post 
2010) 

Old Code (Pre 
2010) 

Rural Interstate 1  1 
Rural Expressways 2 Didn't Exist 

Rural Other Principal Arterial 3 2 
Rural Minor Arterial 4 6 

Rural Major Collector 5 7 
Rural Minor Collector 6 8 

Rural Local Access 7 9 
Urban Interstate 1 11 

Urban Expressways 2 12 
Urban Other Principal Arterial 3 14 

Urban Minor Arterial 4 16 
Urban Major Collector 5 17 
Urban Minor Collector 6 18 

Urban Local Access 7 19 
 

Under the post-2010 classification scheme, facilities are specified by a combination of facility types and 
area types. This information must be specified to identify default attributes (such as capacity) of each 
facility. 

Brief descriptions of major roadway functional class mentioned in Table 3.1-2 include: 

Interstates: These roadways are the highest classification of arterials with limited access and designed 
for high level of mobility by linking urban areas. Interstate highways are officially designated as 
“Interstates” by the US Secretary of Transportation.  

Expressways: This roadway functional classification category is very similar to Interstates with strict 
access control and designed for long-distance travel. However, they do not have an official “Interstate” 
designation.  

Other Principal Arterials: Major roadways serving major metropolitan areas and rural areas by providing 
high level of mobility. Abutting land uses may be served directly.  

Minor Arterials: These roadways serve trips of moderate length and typically serve smaller geographic 
areas by offering connectivity to higher arterials.  



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 15 of 70 

 

Major and Minor Collectors: These roadways are crucial for providing connectivity between local roads 
and arterials. Typically, Major Collector routes have higher speed limits and lower access densities than 
their Minor Collector counterparts.  

Local Roads: These roadways provide direct connections abutting land and are not designed for through 
traffic.  

Table 3.1-3 shows the link attributes and brief descriptions for the Mid-State roadway network. Speed 
and capacity determinations are described in Section 3.1.7.  

Table 3.1-3: Mid-State Roadway Network Attributes and Descriptors 

Attribute Description Values 

DIR Direction 1 or -1 for One-way Links 
0 - Two -way links 

FUNCCLASS Functional Class 

1- Interstate 
2- Freeway or Expressway 
3- Other Principal Arterial 
4- Minor Arterial 
5- Major Collector 
6- Minor Collector 
7- Local Road or Street 
8- Ramp (All Ramps) 

SPD_LMT Posted Speed Limit Numeric Integer Value 
THRU_LANES Total Number of Lanes Numeric Integer Value 

REGION Type of Area Urban 
Rural 

AB_LANES Lanes in AB Direction Numeric Integer Value 
BA_LANES Lanes in BA Direction Numeric Integer Value 

MSFFS Base Free Flow Speed Numeric Integer Value 
MSHRCAP Base Hourly Lane Capacity Numeric Integer Value 

STATE Region in which the links are 
Indiana 
Kentucky 
Tennessee 

AADT Field AADT from 2017 Numeric Integer Value 
AADT_SINGL AADT Single Axle Trucks 2017 Numeric Integer Value 

AADT_COMBI AADT Combined Axle Trucks 2017 Numeric Integer Value 
 

Figure 3-4, found on the next page, shows roadway functional classes for the Mid-State network.  
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Figure 3-4: Mid-State Roadway Network Functional Classes 
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3.1.7 Speed-Capacity Estimation 
The speed-capacity estimation for highway network links was based on detailed review of relevant 
research works and detailed understanding of the roadways within the model boundaries. Estimated 
free flow speed based on the Highway Capacity Manual (HCM) procedures typically underestimate free 
flow speed when field observed free flow speed is higher than 40 mph.1 Field observed free flow speeds 
were typically found five percent to 15 percent higher than the posted speed limits for different 
roadways in both rural and urban areas.2 Considering these facts and detailed evaluation of the roadway 
posted speed limits in the highway network, free flow speed for the highway network links were 
estimated as 10 percent higher than the posted speed limits.    

Highway network link capacities (vehicle per hour per lane) were assigned based on roadway functional 
class and area type designations. Table 3.1-4 shows link capacity (vehicle per hour per lane) for the 
roadways in the Mid-State network.  

Table 3.1-4: Mid-State Roadway Network Link Capacity 

Functional Class Urban Rural 

1- Interstate 1800 1800 

2 - Freeway or Expressway 1800 1800 

3 - Other Principal Arterial 1500 1600 

4- Minor Arterial 1300 1500 

5- Major Collector 1100 1200 

6- Minor Collector 400 500 

7- Local Road or Street 500 600 

8- Ramp (All Ramps) 1300 1300 
 

3.1.8 Traffic Counts 
Traffic count data for the Mid-State model area were obtained from the following sources: 

• Indiana: Indiana Department of Transportation 
• Kentucky: Kentucky Transportation Cabinet 
• Tennessee: Tennessee Department of Transportation 
• Direct Field Counts: Traffic count data was collected at 20 intersections and 15 roadway 

segments within the 12-County study area in late summer/early fall of 2019. The count locations 
were selected based on location of major population areas and roadways with higher regional 
importance (e.g., higher functional class). Field collected traffic count data supplemented INDOT 
counts.   

 
1 Evaluation of Free Flow Speeds on Interrupted Flow Facilities, Florida Department of Transportation, May 2013 
2 Development of Speed Models for Improving Travel Forecasting and Highway Performance Evaluation, Florida 
Department of Transportation, December 2013 
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INDOT’s Statewide Model roadway network contained the traffic count Station ID information for specific 
roadways. INDOT’s online MS2 Traffic Count Database System (TCDS) contains latest Annual Average Daily 
Traffic (AADT) volumes for the stations located throughout the state. AADT volumes for vehicles and 
trucks for the selected stations for 2016-2018 were obtained from the TCDS database.   

KYTC’s Highway Information System (HIS) database was used to obtain traffic counts for the roadway links 
with traffic count stations within Kentucky state boundary.  

Traffic count data for the Tennessee portion of the roadway network were available in GIS shapefile 
format from TNDOT.  

Traffic count data from these sources were in different format. AADT volumes for vehicles and trucks were 
carefully reviewed to create a combined traffic count file. Two-letter prefixes were added for each state 
(e.g., IN, KY, TN) with the traffic count station IDs to confusing station IDs from different states. Due to 
inconsistent data collection years and a lack of detailed long-term trend data across count stations, traffic 
counts from 2016, 2017, and 2018 were used, as available and without adjustment.  Table 3.1-5 shows 
sample traffic count data for different traffic count stations within the Mid-State model boundaries.  

Table 3.1-5: Sample Traffic Count Data within Mid-State Model Boundaries 

Station ID AADT_16 AADT_17 AADT_18 SUTrk_16 SUTrck_17 SUTrck_18 MUTrck_16 MUTrck_17 MUTrck_18 

IN100230 11,400 11,503 11,549 1,453 1,466 1,472 476 480 482 
IN100292 7,045 7,108 7,136 542 547 549 69 70 70 
IN100300 5,626 5,598 5,492 593 590 579 106 105 103 
IN100301 6,321 6,289 6,170 520 517 507 44 44 43 
KY001A43 0 0 13,546 0 0 0 0 0 0 
KY001A46 0 12,034 0 0 513 0 0 241 0 
KY001A70 5,973 0 0 430 0 0 194 0 0 
KY001A74 1,270 0 0 0 0 0 0 0 0 
KY001A75 1,375 0 0 0 0 0 0 0 0 
KY001A76 1,448 0 0 0 0 0 0 0 0 

 

 

3.2 TAZ and Socioeconomic Data Development 
This section describes the data sources and methodology for the development of Traffic Analysis Zones 
(TAZs) and socioeconomic data for the Mid-State model area, including detailed quality reviews and 
checks. As described in Section 3.1, the areas of the Mid-State TDM geographic structure includes the 
following: 

• Twelve county Study Area in Indiana 
• Portions of Indiana within the TDM boundary 
• Portions of Kentucky within the TDM boundary 
• Portions of Tennessee within the TDM boundary 
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3.2.1 Twelve County Study Area in Indiana 
The Mid-States Study Area includes the counties bounded by I-69 on the west and north, SR 37 on the 
east, and the Ohio River on the south. These were selected as the project study area because they may 
experience noteworthy changes in traffic patterns due to the project. Table 3.2-1 shows the twelve 
counties along with their Federal Information Standard (FIPS3) codes.  

Table 3.2-1: FIPS Codes for Twelve Mid-States Counties 

# FIPS Code Name 
1 18147 Spencer County 
2 18125 Pike County 
3 18123 Perry County 
4 18117 Orange County 
5 18173 Warrick County 
6 18037 Dubois County 
7 18055 Greene County 
8 18025 Crawford County 
9 18027 Daviess County 

10 18101 Martin County 
11 18105 Monroe County 
12 18093 Lawrence County 

 

 

 

 

 

 

 

 

 

 

 

 
3 Federal Information Processing Series (FIPS) are numeric codes assigned by the National Institute of Standards 
and Technology (NIST). Typically, FIPS codes deal with US states and counties. US states are identified by a 2-digit 
number, while US counties are identified by a 3-digit number. 
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3.2.2 Other Portions of Indiana within the TDM Boundary 
The Mid-States TDM boundaries also include all or parts of 21 additional counties in Indiana. Table 3.2-2 
lists Indiana counties within the TDM boundary but outside the 12 county Study Area.  

Table 3.2-2: FIPS Codes for Indiana Counties within TDM Boundary, but Outside Mid-States Study Area 

# FIPS Code Name Scale* 
1 18005 Bartholomew County P 
2 18013 Brown County F 
3 18019 Clark County P 
4 18043 Floyd County F 
5 18051 Gibson County F 
6 18061 Harrison County F 
7 18063 Hendricks County P 
8 18071 Jackson County F 
9 18079 Jennings County P 

10 18081 Johnson County P 
11 18083 Knox County P 
12 18097 Marion County P 
13 18109 Morgan County F 
14 18119 Owen County P 
15 18129 Posey County P 
16 18133 Putnam County P 
17 18143 Scott County P 
18 18145 Shelby County P 
19 18153 Sullivan County P 
20 18163 Vanderburgh County F 
21 18175 Washington County F 

*Counties are either fully (F) or partially (P) within the TDM boundaries 
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3.2.3 Portions of Kentucky within the TDM Boundary 
The Mid-States TDM area includes a significant portion of Kentucky. Table 3.2-3 shows 26 Kentucky 
counties which are either fully or partially included in the TDM boundary.  

Table 3.2-3: Kentucky Counties Fully or Partially within TDM Boundary 

# FIPS Code Name Scale* 
1 21009 Barren County P 
2 21027 Breckinridge County F 
3 21029 Bullitt County P 
4 21031 Butler County F 
5 21047 Christian County P 
6 21059 Daviess County F 
7 21061 Edmonson County F 
8 21085 Grayson County F 
9 21091 Hancock County F 

10 21093 Hardin County P 
11 21099 Hart County P 
12 21101 Henderson County P 
13 21107 Hopkins County P 
14 21111 Jefferson County P 
15 21123 Larue County P 
16 21141 Logan County F 
17 21149 McLean County F 
18 21163 Meade County F 
19 21177 Muhlenberg County F 
20 21179 Nelson County F 
21 21183 Ohio County F 
22 21185 Oldham County F 
23 21213 Simpson County F 
24 21219 Todd County F 
25 21227 Warren County P 
26 21233 Webster County P 

*Counties are either fully (F) or partially (P) covered by the TDM boundaries  

 

 

 



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 22 of 70 

 

3.2.4 Portions of Tennessee within the TDM Boundary 
The Mid-State TDM includes portions of the State of Tennessee. Table 3.2-4 shows the five Tennessee 
counties which are either fully or partially included in the TDM boundary.  

Table 3.2-4: Tennessee Counties Fully or Partially within TDM Boundary 

# FIPS Code Name Scale 

1 47021 Cheatham County F 

2 47037 Davidson County F 

3 47125 Montgomery County P 
4 47147 Robertson County F 

5 47165 Sumner County P 
*Counties are either fully (F) or partially (P) covered by the TDM boundaries  

Figure 3-5 shows the Mid-States TDM TAZ boundaries by area. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Mid-States TDM TAZ Boundaries by Area  
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3.2.5 Data Sources 
Key data sources for developing Mid-States TDM TAZ boundaries include the following: 

• US Census boundaries (Blocks, Block Groups, and Tracts) 
• Current version of the INDOT’s Statewide Model (INSWM) TAZ boundaries 
• Current version of the KYTC’s Statewide Model (KYSWM) TAZ boundaries 
• Current version of the TNDOT’s Statewide Model (TNSWM) TAZ boundaries 

In addition to the above-mentioned sources, web-based imagery (Google Maps and ESRI) and TransCAD 
data GIS files (highways, water bodies) were used to review and modify TAZ boundaries.  

3.2.6 TAZ Development Methodology 
Mid-States TDM TAZ development in the twelve-county core area started with the INSWM. INSWM TAZ 
boundaries within the twelve-county core area were not detailed enough for the Mid-States TDM. INSWM 
TAZs within the twelve-county area were disaggregated through careful review of existing land-uses, 
presence of natural and human-made barriers, and existing political and planning boundaries. Web-based 
satellite imagery supplemented the process of separating town centers (densely populated areas) from 
other areas. Disaggregation process followed a strong protocol of preserving the overall boundaries of 
the INSWM TAZ boundaries.  

INSWM had 460 TAZs in the Twelve-County area. Through this disaggregation process, an additional 366 
TAZs were developed in the twelve-county Study Area. The Study Area has a total of 826 TAZs. 

Figure 3-6 shows examples of disaggregating INSWM TAZs in the twelve-county core area by creating 
separate TAZs for the town centers or high-density land-uses from relatively low-density land-uses.  

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 3-6: Examples of INSWM TAZs in Mid-States Study Area 
 
TAZ boundaries for rest of Indiana within the Mid-States TDM area were the same as the INSWM TAZ 
boundaries with a few exceptions. Some INSWM TAZ boundaries were updated though careful review of 
natural and human-made barriers and political and planning boundaries.  

INSWM TAZs High density areas in 
red rectangles 

New Mid-State TDM 
TAZs 
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Mid-State TDM TAZs in Kentucky followed the KYSWM TAZ boundaries with a few exceptions. Some 
KYSWM TAZ boundaries were updated though careful review of natural and human-made barriers and 
political and planning boundaries. 

Mid-States TDM TAZ boundaries in Tennessee followed the TNSWM TAZ boundaries.  

Table 3.2-5 shows the total number of TAZs in different geographies of the Mid-States TDM.  

Table 3.2-5: Total Number of TAZs in Different Geographies of the Mid-States TDM 

Geographies # of TAZs 
Twelve-County Core Area 826 

Indiana  625 
Kentucky 1,228 

Tennessee 378 
Total 3,057 

 

3.2.7 Socioeconomic Data for Base Year 2017 
Socioeconomic data is one of the key inputs for the Mid-State TDM. Due consideration was given to 
careful develop the socioeconomic attributes for each TAZs. Key socioeconomic attributes for each TAZs 
and their sources are shown in Table 3.2-6.  

Table 3.2-6: TAZ Key Socioeconomic Attributes 

Socioeconomic Attributes  Data Source ACS Table 
Total Population  2017 ACS Five Year Estimates  B01003 

Household Population (HHPOP) 2017 ACS Five Year Estimates  TOTPOP - GQPOP 
Group Quarter Population  2017 ACS Five Year Estimates  B26001 

Total Households (HH) 2017 ACS Five Year Estimates  B11011 
Average Household Size  2017 ACS Five Year Estimates  HHPOP / HH 

Average Household Income  2017 ACS Five Year Estimates  S1901 
K-12 School Enrollment (K12)  2017 ACS Five Year Estimates  S1401 
Average Household Students  2017 ACS Five Year Estimates K12 / HH 
Average Household Workers  2017 ACS Five Year Estimates  B08202 
Average Household Vehicles   2017 ACS Five Year Estimates B08201 

 Household Seniors   2017 ACS Five Year Estimates S1101 
College/University Enrollment  2017 ACS Five Year Estimates S1401 

 

Socioeconomic data available from the different statewide models had different base years (e.g., 
Kentucky 2010, Indiana 2015 and Tennessee 2017). For the model’s 2017 base year, demographic data 
used 2017 ACS five-year estimate data for all attributes by disaggregating county level data to the TAZ 
level. The first step was to assign 2010 census blocks to Mid-State TAZs and then calculating 
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disaggregation factors as the ratio of block level households and population to their respective county 
control totals. The developed disaggregation factors were used to allocate base year (2017) county level 
data to each block within a TAZ.  

The majority of census blocks were compatible with the TAZ boundaries. For those that were not, 
disaggregation at block level was done by calculating the ratio of the area of the block in TAZ to the total 
area of the block. This proportion was factored into block’s households and population to get a uniform 
distribution of household and population data.  

Block level data were aggregated at TAZ geography scale. The TAZ level demographic data was reviewed 
and checked for reasonableness. In some cases, Google images were used to check for areas with high 
and low concentration of households or population. Both Figure 3-7 and Figure 3-8 show base year 
population and household by TAZs in the Mid-States TDM respectively.  



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 26 of 70 

 

Figure 3-7: Base Year Population Totals by TAZs in the Mid-States TDM  
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Figure 3-8: Base Year Household Totals by TAZs in the Mid-States TDM 
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The employment categories for the Mid-States TDM TAZs and the sources used for development of the 
employment data are shown in Table 3.2-7. The employment data was developed from Longitudinal 
Employer-Household Dynamics (LEHD) data with the most recent LEHD data available from 2017.  

Table 3.2-7: Mid-States TDM TAZs Employment Categories 

Employment Categories by North American Industry Classification System (NAICS) Codes 
Agriculture, Forestry, Fishing and Hunting NAICS sector 11  
Mining, Quarrying, and Oil and Gas Extraction NAICS sector 21 
Utilities NAICS sector 22 
Construction NAICS sector 23 
Manufacturing NAICS sector 31-33 
Wholesale Trade NAICS sector 42 
Retail Trade NAICS sector 44-45 
Transportation and Warehousing NAICS sector 48-49  
Information NAICS sector 51  
Finance and Insurance NAICS sector 52 
Real Estate and Rental and Leasing NAICS sector 53 
Professional, Scientific, and Technical Services NAICS sector 54 
Management of Companies and Enterprises NAICS sector 55 
Administrative and Support and Waste Management and Remediation Services NAICS sector 56 
Educational Services NAICS sector 61 
Health Care and Social Assistance NAICS sector 62 
Arts, Entertainment, and Recreation NAICS sector 71 
Accommodation and Food Services NAICS sector 72 
Other Services [except Public Administration] NAICS sector 81 
Public Administration NAICS sector 92 

 

Development of the employment data for the Mid-State TDM TAZs included the development of a 
geographic link between the TAZs and census blocks by allocating each census block to a zone. Once each 
block was allocated to the TAZ, the 2017 LEHD data for total employment and employment category by 
the North America Industry Classification System (NAICS) for each block was aggregated by TAZ. Specific 
quality checks of the employment data included: 

• Ensuring the sum of all employment categories for each TAZ was equal to the total employment 
in each TAZ 

• Developing thematic maps for total employment to visually check high and low employment 
zones using Google Earth images to make sure they were consistent with the actual land use.  

Figure 3-9 shows base year total employment for each TAZs in the Mid-States TDM.  
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Figure 3-9: Base Year Employment Totals by TAZs in the Mid-States TDM 
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3.2.8  Socioeconomic Data for Forecast Year 2045 
Horizon year (2045) socioeconomic data for the Mid-State TDM TAZs were obtained from the following 
sources: 

• Indiana Statewide Model 2045 Socioeconomic projections 

• Kentucky Statewide Model 2040 socioeconomic projections 

• Tennessee Statewide Model 2045 socioeconomic projections 

• Evansville Metropolitan Planning Organization (EMPO) 2045 socioeconomic projections 

• Kentucky Regional Planning and Development Agency (KIPDA) 2045 socioeconomic projections 

• Bloomington Monroe County Metropolitan Planning Organization (BMCMPO) 2045 
socioeconomic projections   

For the Mid-State TDM TAZs in Indiana, in general 2045 socioeconomic projections (total population in 
2045 and growth in employment from 2017 to 2045) were obtained from the INSWM TAZs 2045 
projections. For the Mid-State TDM TAZs which are within certain MPO boundaries (e.g., BMCMPO, 
EMPO, and KIPDA), 2045 INSWM projections were compared with the MPOs’ socioeconomic projections 
and necessary adjustments were made were MPO projections were more reasonable. The MPO 
projections reflected additional local input not available to INSWM developers.  

For Mid-State TDM TAZs in Kentucky, 2045 socioeconomic projections were obtained by using 
population and employment growth rates from 2010 to 2040 specified in the Kentucky Statewide 
Model. For the Mid-State TAZs within KIPDA’s TDM boundaries, 2045 socioeconomic projections were 
obtained from the KIPDA’s 2045 projections.  

For the Mid-State TAZs in Tennessee, 2045 socioeconomic projections in the Tennessee Statewide 
Model were used.   

4 PASSIVELY COLLECTED BIG 
DATA 

Passively collected big data on the movement of persons and vehicles presents a valuable and powerful 
new resource for travel modeling and forecasting. Passive mobility data includes information from 
observations of millions of individual trips that can be harnessed for travel modeling and forecasting and 
simply understanding travel patterns in a region, how people circulate through a city on a daily basis. 

Passively collected data for the Mid-States Corridor were provided and expanded by project team 
member RSG, a multidisciplinary consulting firm and national leader in developing and applying travel 
demand modeling and analytical techniques to predict travel behavior and transportation systems 
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dynamics. RSG has worked with key mobile device data providers, and since 2019 has informed projects 
with its own mobility big data platform, rMerge.4 

Sources and Types of Passive Data 
For rMerge, RSG uses Location-Based Services (LBS) data, which can be generally understood as 
smartphone app data. LBS data is location data provided to applications on a smartphone (or other 
mobile device) by background programs on the device called location-based services. These LBS 
programs serve location data to apps based on the requirements of the app and the various information 
on location available to the device, primarily GPS and Wi-Fi beacons (but also in small amounts 
Bluetooth beacons and cell tower signaling).  

While other passively-collected data sources exist, including cell tower signaling data and pure GPS 
feeds from in-vehicle navigation systems, several considerations support the choice of LBS data over 
these other sources for travel analysis:   

• Sample size – Since roughly 2018 LBS datasets have provided larger datasets than cell tower 
signaling datasets. These datasets also provide information from more devices, and report on a 
greater proportion of total travel.  The LBS data used by RSG typically contain observations on 
10-15 percent of the population on any given day and close to half the population over the 
course of a month.  In contrast, cellular datasets can capture a similar portion of the population 
but are inferior in locational precision, and quality in-vehicle navigation GPS data is only 
available from a very small portion of personal vehicles and obviously contains no observations 
of other modes.   

• Precision – GPS data provides the greatest consistent level of precision in locations (to within 10 
meters). The portion of LBS data that is from mobile device GPS signals is generally of similar 
precision to that of pure GPS streams from in-vehicle navigation systems and comprises a large 
portion of rMerge LBS data. A large portion of LBS data also comes from Wi-Fi beacon locations 
which are typically precise to within 30 to 50 meters (accurate enough for inferring location 
within a regional model zone system) and a small portion of LBS data comes from Bluetooth 
beacons, with precision generally similar to Wi-Fi. Under some circumstances, a small portion of 
LBS data can come from cell tower signaling information. Hence, while only a portion of LBS data 
provides the level of precision provided by in-vehicle navigation systems, all of it is as precise, 
and the vast majority of it more precise, than cellular data. All LBS data is filtered for device 
quality and can contribute to the overall inference of travel patterns within a region. While the 
consistently high level of location precision from in-vehicle navigation data make it superior for 
identifying travel speeds on network roadways, the larger breadth of LBS data make it superior 
for identifying travel patterns.  

• Frequency – The temporal frequency of observations (sometimes called data density) is another 
key consideration in passive data as long gaps between observations lead to an incomplete (and 
systematically biased) picture of travel.  Cell tower signaling typically has the worst data density, 
and GPS typically offers the best.  Because LBS data comes from a variety of smartphone 
applications, each with its own use patterns and location reporting frequencies, LBS data density 

 
4 rMerge is a complex software and data system engineered to convert raw mobile device sightings into travel 
behavior datasets and insights. The tool has been in development for over four years and supports dozens of 
planning and infrastructure projects across the United States. 
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varies between devices in the dataset. As such, a portion of trips inferred from LBS datasets 
contain detailed trace observations along the route taken between origin and destination, while 
others include only observations at the origin and destination, or a few scattered points along 
the route. In all cases, rMerge trips are anchored at origin and destination with identified 
clusters of stationary device sightings.  

• Demographics – Demographic biases are another important consideration in the selection of 
data sources.  In-vehicle navigation GPS data is very heavily biased toward high income 
individuals who can afford to buy late model cars with navigation option packages.  LBS data is 
substantially less demographically biased than in-vehicle navigation GPS data, since the vast 
majority of Americans now own smartphones.5 6  

In summary, as of this time, LBS data provides the best combination of desirable characteristics for 
travel analysis.  It provides the largest sample sizes of any data source available, for a more diverse 
population than in-vehicle navigation data and with higher locational accuracy and data density than cell 
tower signaling data.    

While presently LBS data provides the best combination of desirable characteristics for travel analysis, it 
is still important to consider its inherent limitations and issues.  The focus of this document is largely to 
record and explain the steps taken to address these issues and limitations in order to provide the 
highest quality mobility data.  

Advantages and Limitations 
Passive data offers three key advantages compared to traditional data sources such as travel surveys: 

• Scale – Passive data provides information on the movements of significant portions of the 
population.  It may be possible to observe 10 – 15 percent of the population on a given day and 
up to half the population over the course of a month.  Information is available on roughly 30 
percent of heavy trucks on the road.  This level of sampling supports types of analyses that 
simply are not possible with the sampling of traditional surveys (1 percent of the population or 
less).  Passive mobility data provides estimates both of the distribution of trip lengths and the 
actual distribution of trips between locations.   

• Continuity – Most passive data are collected continuously all day, every day.  There are 
challenges and real costs associated with processing this level of information. But it now is 
possible to capture an entire month of data cost-effectively. It is possible to analyze data for 
multiple months or for an entire year or more.  To ensure valid trend analysis or comparisons 
over time, it is critical to properly differentiate between changes in actual travel and changes in 
the data itself, such as to the percentage of people with devices providing data.  However, the 
ability to monitor how travel changes over time, especially in response to stimuli such as new 
technologies or the construction of new infrastructure, is especially valuable in this era of rapid 
change.   

 
5 The Pew Research Center indicates 85% of Americans own a smartphone as of February, 2021. 
(https://www.pewresearch.org/internet/fact-sheet/mobile/) 
6 In 2016 Lochmueller Group and ETC Institute performed a systemwide origin-destination survey for the IndyGo, 
the Indianapolis, Indiana Transit System. It found that 77 percent of respondents owned smartphones. Over 57 
percent of respondents had household incomes under $25,000. 



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 33 of 70 

 

• Cost – Since the only interaction required by people or companies observed passively is the brief 
and easy electronic submission of consent, large samples of data can be collected passively at 
relatively low cost compared to traditional methods of data collection. Traditional methods 
require either more extensive interaction with the subjects of study or the deployment, 
monitoring and maintenance of equipment.  The cost of traditional data collection is largely a 
function of the amount of data collected.  In contrast, the cost of passive data is largely a 
function of its quality; the largest portion of the cost is not data collection but rather its 
cleaning, processing and expansion.   

However, there are limitations.  The three key limitations of passive location or mobility data are: 

• Limited Scope – All passive data available to date are basically “trace data”, which is simply a 
series of locations and timestamps associated with devices or vehicles.  Sometimes there is 
ancillary information such as speed, heading, acceleration, device type or precision of the 
location estimate. There is no information on the person who operates the vehicle; to whom the 
device belongs; trip purpose or type of activity; who may be traveling with them or (for data 
from mobile devices as opposed to vehicles) the mode of travel.  Data science allows inferring or 
imputing additional information (through the use of additional sources of data such as land use). 
However, there is always some error in these inferences. It is important to understand the 
methods by which these inferences are made.   

• Representativeness – All existing commercially available passively collected datasets are based 
on incomplete sample frames. These datasets include only a select, non-random portion of 
vehicles or travelers with mobile devices. They exclude travelers without mobile devices or 
vehicles without navigation services. Moreover, short-distance trips or short-duration activities 
are typically under-represented in the data because capturing such trips requires more frequent 
observations of position. Travel to and from locations with poor coverage can also go un- or 
under-detected. Failure to account for such biases can produce erroneous representations and 
faulty predictions of trip lengths, trip flows between origins and destinations, and travel activity 
and traffic in general. 

• Privacy – There is widespread agreement on the need to protect the privacy of individuals.  
However, protecting privacy inevitably involves some loss of information.  There are differing 
approaches and perspectives on how best to protect privacy. All such protection requires some 
tradeoff between the loss of information and the level of certainty that privacy has been 
protected. Ideally, travel patterns cannot be attributed to specific individuals.   

Passive mobility data complements traditional count and survey data. It provides information that 
surveys cannot (or can only with great cost). However, passive data will never fully replace data from 
surveys and counts. In the case of surveys, this is because passive data is—by its nature and the 
necessity of privacy protection—anonymous. It does not provide travelers’ characteristics and purposes, 
or the mode used. These are important for many types of forecasting (such as mode choice). There 
remains a significant need to understand how different kinds of people travel, how they travel 
differently for different purposes, how travel serves different kinds of activities or what mode of travel is 
used. Travel surveys are needed to provide these data. Such information cannot be observed passively, 
nor can there be confidence it is being correctly inferred without validation by survey data.   

Passive mobility data can provide information on trucks and visitors, both of which are costly to collect 
in a survey. Passive mobility data can also collect much larger samples, which are important for less 
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frequent phenomenon like longer distance trips, and for providing a detailed understanding of the 
spatial (OD) patterns of daily resident trips. While surveys capture many important details of daily 
resident trips (particularly regarding purpose and mode), no cost-constrained survey can itself provide 
an OD trip matrix at the level of zones or even moderately disaggregate districts. Traditional surveys 
typically contain observations for two percent or less of the cells in the OD matrix. In contrast, passive 
OD data typically provide observations a full order of magnitude greater. These data inform alternative 
data-driven model frameworks which can produce more accurate spatial results. They provide better 
understanding of spatial travel patterns.  Moreover, since the prediction of mode and willingness-to-pay 
tolls depends critically upon where people are traveling to and from, passive data supports more 
accuracy in these dimensions as well.   

 

4.1 Data Processing 
With the ubiquity of connected devices and the location-based data they generate, actual origin-
destination (OD) travel patterns can be observed for a significant portion of the general population and 
aggregated into OD travel matrices.   

RSG’s LBS data processor creates study-area specific OD trip lists by extracting raw sightings from a 
national dataset with over one trillion sightings per year (raw data obtained from the application data 
aggregation firm Veraset™), filtering for quality devices and processing to identify trips. In addition to 
trip origins and destinations, information on trip types, including whether either trip end is a “home”, 
“work”, or “other” location, is also inferred. Figure 4-1 presents the overall workflow for generating 
observed trip tables.  

 
Figure 4-1: Passive Data Workflow 

Additionally, heavy truck GPS data was acquired from the American Transportation Research Institute 
(ATRI), which is a not-for-profit research organization focused on the trucking industry. ATRI GPS data 
was processed similarly to the rMerge LBS data, resulting in an expansion process involving multiple 
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vehicle classes. Given the accuracy of GPS data and the modeling application need of heavy truck trips, 
the processing of heavy truck trips is more straightforward than the passive passenger data processes 
outlined in this section. 

4.1.1 Filtering 
National LBS datasets include device sightings for well over a hundred million devices. However, not all 
devices are relevant to a given study area and many of these devices are observed only sporadically. 
Inferring trip patterns from sporadic data can lead to false inferences and generally poor-quality OD 
matrices. Therefore, RSG applies quality filters and uses only a subset of the total LBS data initially 
available. This provides a consistent high-quality data stream to reduce the chance of false trip 
inferences and provide high quality OD matrices. 

In creating study area OD matrices, RSG first filters out low-quality devices. Based on extensive 
exploratory analysis used to understand noise in the data, filters to remove low-quality data consider 
factors like unreasonable speeds, long average gaps between sightings, geographic diversity in sightings, 
and frequency and temporal range of device sightings.  

RSG LBS data from the month of October 2018 was processed for the Midstates model boundary, which 
includes portions of Indiana, Kentucky, and Tennessee, to generate observed trip lists.  

4.1.2 Processing 
Trips are identified from the raw coordinate-timestamp data using a two-step process. In the first step, 
individual sightings are classified as stopped or in motion based on the speed computed over a rolling 
time window. In the second step, a spatial clustering algorithm is applied on all stopped sightings to 
identify locations where devices have stopped (clusters)7.  A smoothing algorithm classifies device 
movement status to filter out stops at traffic signals or stops due to congestion. Device home and 
workplace locations are inferred from clusters using several indicators, including overnighting and 
frequency of cluster visitation.   

Table 4-1 summarizes processed data for the Mid-States study area. Within the month of October, 2018, 
a total of 1,602,896 total devices were seen. Of these, 294,323 devices (approximately 7.0 percent of 
the overall Mid-States 2015 population) were identified to have a home location within the model 
region. An additional 290,295 devices were identified to make trips within the Mid-States region but 
have a home location outside. The remaining 1,018,278 devices seen in the month were deemed to 
have insufficient data with which to accurately identify travel behavior, which aligns with similar LBS 
data extractions. 

Table 4-1: LBS Data Summary 

Items Number 

Resident Devices 294,323 
Visitor Devices 290,295 
Dropped Devices 1,018,278 
Clusters 4,160,428 

 
7 To be identified as a cluster, a location requires “stopped” sightings in at least three unique five-minute time bins. 
Each cluster has an associated frequency metric, indicating the relative number of stops recorded. 
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Trips 14,438,435 
 

A time-ordered diary of device dwells (i.e., specific times when a device is stationary at a stop cluster) is 
then assembled, and trips are constructed connecting all dwells in the diary. Trip ends are then tagged 
to study area custom geographies (TAZ polygons). Finally, long-distance trips are identified and 
intermediate stops (e.g., a quick stop at a service station on a longer trip) are identified and flagged to 
allow summaries of long-distance trips omitting them. 

Figure 4-2 and 4-3 present national and regional views of study home, work, and other cluster locations. 

 

 
Figure 4-2: Cluster Locations - National Scale 
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Figure 4-3: Cluster Locations - Model Scale 

 

4.2 Data Expansion 
While big data provides large amounts of data on millions of travelers and trips, it remains only a sample 
of all travelers and all trips.  To produce estimates of total travel for the entire population, it is necessary 
to expand the data to represent all travel.  The challenge for big data is that it is not a controlled random 
sample but rather a “convenience” sample. It is not necessarily a representative sample.   

Big data is known to be a systematically biased sample in several ways, and failure to account for these 
biases can lead to erroneous representations and faulty predictions of trip lengths, trip flows between 
origins and destinations, present/future travel activity and traffic in general.  For these reasons, it is 
critically important that expansion methods correct for biases and ensure the final expanded data 
product is representative of all travel.   

4.2.1 Types of Bias 
There are three main known types of bias present in big data.  Each of these presents its own challenges 
and requires its own methods to address. 

• Demographic Bias - All existing commercially available passively collected mobility data are 
based on incomplete sample frames. LBS datasets include only a select, non-random portion of 
travelers with mobile devices. They exclude travelers without mobile devices.  Moreover, since 
LBS data is derived from data-supporting, location-aware apps, individuals with more apps are 
more likely to provide data.  Given smartphone ownership and app usage trends, big data tends 
to under-represent seniors and low-income populations and over-represent young adults and 
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affluent populations.  These biases are decreasing over time and there are now significant 
numbers of seniors and low-income travelers in the data. These data can be expanded more 
readily to represent these groups. These under-represented groups must be expanded more, 
and over-represented groups expanded less to achieve a representative data expansion. 

• Duration Bias - Short-distance trips or short-duration activities are often under-represented 
because capturing them requires more frequent location observations.  This is a fundamental 
issue in all datasets where there is variability in the frequency of observations.  Almost all 
sources of big data have this characteristic, albeit to varying degrees and for sometimes 
different underlying reasons.  For LBS data, variations in the frequency of observations arise due 
to differing app needs for location data, different behavior of various LBS to different conditions 
(such as low battery charge or lack of Wi-Fi or 4G data service) and differences in user settings 
and permissions.  Regardless of the underlying reason, when there is varying frequency in 
observations, the sampling probability of an event (e.g., a trip or an activity) is a function of its 
duration. The shorter event can more easily “slip through the cracks” between observations.   

• Geographic Bias - Travel to and from locations with poor data coverage can also go un- or 
under-detected.  Different devices and different LBS respond differently to differing levels of 
data service.  In very rare circumstances, where there is no data service and no GPS line-of-sight 
(e.g., under a cliff or overhang in a remote area), there can be actual holes with no data.  
Typically, the problem is more subtle. There may be some areas where there is poor or no data 
service, but sampling rates in these areas are lower than in areas with good data service.  
Sightings in areas of poor data service often have to be expanded more to ensure representative 
patterns in the final data.   

These three recognized forms of systematic bias are the main focus of our expansion processes. There 
may also be other, still as yet unrecognized forms of bias in passive data.  For this reason, our expansion 
processes are also designed with some flexibility to capture and correct for subtle biases that may be 
measurable against control data, even when the underlying mechanism is not clearly understood.   

4.2.2 Types of Control Data 
Comparing two or more datasets allows for identification and correction of biases in a dataset. A dataset 
may be expanded by using one or more additional “control” data sets to measure and correct for biases 
in the data of interest. For instance, travel diary survey data is expanded or weighted primarily using 
Census Bureau datasets as control data. On-board transit surveys are expanded using estimates of route 
level ridership, such as on-off counts, as control data.   

Three types of control data are available for expansion of passive mobility data: 

• Demographic and employment data from the Census Bureau (and sometimes other private 
sources for employment data) 

• Travel counts, primarily roadway traffic counts, although bicycle and pedestrian counts, transit 
ridership estimates, site visitation counts, ticket sales, etc., sometimes are used   

• Disaggregate trace data from smartphone travel surveys, such as rMove. For these surveys, 
respondents provide details on trip characteristics and demographics to smartphone-based 
travel survey questions, while the survey app simultaneously collects GPS trace data for all trips.  

RSG can and has used all of these types of control data to assess the representativeness of and expand 
passive datasets. The choice of which control dataset(s) are used for the expansion of a particular 
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dataset depends on the type of data to be expanded and the control datasets available.  For instance, a 
dataset for (1) understanding external travel to a region or a dataset for understanding the origins and 
destinations served by a particular roadway may be expanded differently than (2) a general dataset for 
understanding travel patterns in a region. 

For a type (1) dataset, very detailed count data may be available for the entire study area, whether a 
roadway corridor or a region’s external cordon.  For a type (2) dataset, some count data may have a high 
sample rate (including counts by vehicle class and time of day). Other count data may have only a very 
sparse sample of total daily traffic counts.  Similarly, some regions have recent travel survey data with 
smartphone GPS traces.  Others have surveys but without trace data.  Some other regions may have no 
recent survey data at all.   

4.2.3 Ensemble Expansion 
RSG customizes the expansion datasets, leveraging its expertise in travel data and behavior to make best 
use of all available data for each client. This includes using prudent judgment to address idiosyncrasies 
of both passive mobility data and local control data.   

RSG’s standard practice is to use an ensemble of expansion methods to expand passive data. In 
mathematical terms, final expansion factors are generally developed as a product of several component 
expansion factors.  This recognizes that no single method that can address all three of the biases cited 
above.  Within this flexible framework, methods may be added if some techniques prove inadequate. 
Alternatively, some techniques may be dropped if other methods suffice. 

Consistent with general practice across the industry, RSG uses residence-based sample penetration to 
correct for demographic biases using census demographic data as the control.  When smartphone 
survey data are available, RSG can use this as control data for correcting duration bias.  Whenever 
counts are available, RSG uses them to address geographic biases, as well as duration bias when local 
smartphone survey data is not available.   

4.3 Data Expansion 
Given the relatively small amount of local smartphone survey data and traffic counts for the Mid-States 
Study Area, RSG used an ensemble of census and count-based methods to expand the Mid-States 
passive data.  Figure 4-4 illustrates the procedures used in expanding passive data for this project. 
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Figure 4-4: Applied Expansion Process 

 

4.3.1 Residence Sample Penetration Expansion Methods 
Demographic data from the Census Bureau or from travel-demand model land-use inputs can be used to 
measure sample rates and calculate expansion factors by residence zone.  The number of observed 
devices residing in a zone or block group can be compared with the Census Bureau or travel demand 
model’s estimate of the number of people residing in that same unit of geography.  An expansion factor 
is simply the ratio of these two numbers. For Mid-States, US Census data, joined to model zones by 
Lochmueller Group, were used to calculate the demographic expansion factors by zone illustrated in 
Figure 4-5   
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Figure 4-5: Normalized Demographic Expansion Factors 

 

4.3.2 Single-Factor Scaling to Counts 
Single-Factor scaling uses a single expansion factor based on a comparison of passive data to traffic 
counts at one or more locations.  Traffic counts can be compared to LBS data by assigning the trips to 
roadway facilities using a network assignment model. While detailed scaling can be done through 
iterative examination of many individual count locations, single-factor scaling provides a single initial 
high-level adjustment, either based on the overall network-wide loading error (examining all counts 
together) or through comparison with an estimate of regional vehicle miles traveled (VMT) based on 
counts such as those found in FHWA’s Highway Performance Monitoring System (HPMS).     

The simplicity of this method makes it both easy to apply and easy to explain to nontechnical audiences.  
However, since only a single factor is used, it cannot correct for many issues including coverage variation 
within a region or trip-length bias.  Given both its simplicity and limitations, it is commonly used in 
combination with other methods.  For Mid-States, a single-factor scaling adjustment based on overall 
network loading error (ratio of the sum of all counts and the sum of all corresponding LBS routed flows) 
was applied following demographic expansion and prior to more detailed count-based expansions.  
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4.3.3 Iterative Screenline Fitting (Matrix Partitioning) 
Iterative screenline fitting (ISF) or matrix partitioning is a special type of iterative proportional fitting to 
counts.  It differs from the typical Fratar technique in that it relies on counts associated with multiple 
groupings of zones rather than individual zones. Also, zones may be part of more than one grouping.   

The approach first identifies screenlines and/or cutlines (similar to those commonly used to validate 
travel models).  A screenline partitions the study region into two subareas and aligns with the zone 
system used to define ODs. Traffic counts should be available or taken everywhere the roadway network 
crosses the screenline.  (It is helpful to choose screenlines which follow natural/physical barriers such as 
rivers, freeways, and railroads which have limited roadway crossings.)  The definition of cutlines is less 
restrictive, but the closer they are to having the characteristics of a true screenline the less the method 
relies on network pathfinding.  Figure 4-6 shows screenlines and cutlines used for the Mid-States LBS 
expansion. 

 

 
Figure 4-6: Screenlines for Passive Data Expansion 
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The sum of the traffic counts along each screenline and cutline is compared to the number of trips in the 
OD matrix which cross the screenline or cutline.  For true screenlines, this comparison can be made 
without a network assignment model by partitioning or aggregating the OD matrix.  Since each 
screenline partitions the region into two subareas, this partitions the OD matrix into four regions, two 
off-diagonal regions with trips between the subareas and two diagonal regions with trips within each 
subarea.  Groups of OD trips can be compared against screenline counts without a network assignment 
model. A preliminary expansion factor is developed as the sum of the screenline counts divided by the 
sum of the off-diagonal regions of the matrix.  When cutlines are used, the partitioning of the matrix is 
more complex and relies on a network assignment to identify groups of OD trips for cutline count 
comparisons.  Factoring based on screenlines and cutlines results in OD trips matching the sum of 
counts for the current screenline or cutline. However, when trips between individual OD pairs cross 
multiple screenlines/cutlines, there is the potential for different expansion factors to be calculated for a 
single OD pair. For this reason, expansion factor calculations are iterated until expansion factors for 
individual OD pairs stabilize to values that minimize errors versus among all screenline/cutline counts. 
There may not be perfect agreement of the OD data with any individual screenline/cutline count.   

RSG has successfully used this procedure to improve the expansion of several types of passive data in a 
number of regions around the country.  The benefits of this approach increase with the number of 
screenlines which can be constructed. The construction of multiple screenlines and/or cutlines can be 
relatively easy or difficult, depending upon the amount and coverage of count data.  If there is poor 
count coverage, it may not be possible to construct any complete screenlines or a sufficient number of 
cutlines for the method to be of much value. In regions with good count coverage and physical barriers 
to travel that create natural screenlines, the method can be of considerable value and significantly 
reduce the need to use assignment-based methods.   

Fifteen screenlines/cutlines (shown in Figure 4-6) were used for the Mid-States LBS expansion, including 
a valuable screenline using the Ohio River to horizontally bisect the study region and provide an early 
control total for overall north/south travel.  This screenline/cutline fitting before application of 
assignment-based methods reduces the likelihood of introducing expansion errors from network 
assignment models.   

4.3.4 Constrained ODME  
Origin-Destination Matrix Estimation (ODME) refers to a process whereby traffic data is used as an input 
to estimate the traffic volumes between each origin and destination in the form of a resultant O-D 
matrix. ODME is one of the most common approaches to expanding passive data (see for instance 
Zanjani et al., 2015; Han et al., 2016).  A proper understanding of ODME is grounded in two important 
facts.  First, counts do provide real information about underlying OD patterns, and second, counts alone 
cannot be used to identify OD patterns.  The former is demonstrated in iterative screenline fitting.  The 
latter is evident from the fact that the number of “known” traffic counts is always substantially smaller 
than the number of “unknown” OD flows. Statistically, this provides and under-determined problem. 
There is not a single, unique set of OD flows that correspond to a set of traffic counts on a network.   

There are a variety of ODME algorithms which can produce significantly different results.  ODME 
methods which use OD data only as a “seed” or starting point and produce an adjusted OD matrix purely 
by minimizing errors versus traffic counts can significantly distort the data, if unconstrained. Other 
methods are especially powerful as appropriate methods for data expansion. Some methods find a 
solution which minimizes errors versus counts and versus the original ODs. Other methods minimize 
error versus counts with appropriate constraints on adjustments to the original OD data.  These 



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 44 of 70 

 

methods are capable of correcting systematic biases related to trip lengths as well as coverage “holes” 
(provided there are at least some observations in the “holes” to expand). They also can avoid other 
errors which may be difficult to hypothesize a priori while ensuring that the data are not grossly 
distorted.   

RSG typically uses constrained ODME algorithms that minimizes squared error of assigned volumes 
versus counts subject to constraints that the final trip values do not vary from the original by more than 
a given ratio or absolute amount.  For the Mid-states project, RSG limited ODME adjustments at the cell 
level to between +200 percent and -50 percent; moreover, the ODME algorithm used does not allow for 
the introduction of trips in cells with no trips observed.  Finally, RSG also performed data validation 
checks aimed at ensuring that ODME has not overfit to counts.   

Using ODME in combination with and secondary to other expansion methods including demographic 
expansion, single-factor expansion and ISF allows imposition of tighter constraints on the ODME 
adjustments and greater confidence in the expansion while also allowing a tighter fit to traffic counts.  
This is RSG’s standard practice and is the method followed for Mid-States.   

Final results of the Mid-states data expansion, concluding with ODME, are presented in Table 4-2.  The 
following set of statistics are presented for this post-expansion comparison of count data with routed 
OD flows: 

• Observations: the total number of counts 

• Avg. Count: average count volume 

• Avg. Data: average routed OD flow through count location links 

• t Statistic: inferential statistic for determining the significance of observed differences 

• Error: overall percent loading error 

• RMSE: root mean squared error 

• MAPE: mean absolute percentage error 

• r: correlation coefficient  

Figure 4-7 and Figure 4-8 present graphical plots comparing the assigned expanded OD flows and target 
count volumes. Note that the statistics presented in this table are not validations statistics which assess 
the ability of traffic assignments to replicate ground counts. Those statistics are provided in Section 6 of 
this document.  
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Table 4-2: Detailed Expansion Results 

  Observations Avg. 
Count 

Avg. 
Data 

t 
Statistic Error RMSE MAPE r 

All 1768 5940 5565 -1.3 -6.32 42.81 56.75 0.96 
< 5,000 AADT 1144 1886 1937 0.8 2.70 61.61 77.21 0.71 
5,000 to 10,000 AADT 331 7200 6459 -5.1 -10.29 28.97 19.00 0.53 
10,000 to 20,000 AADT 180 13423 12721 -1.6 -5.23 33.90 22.51 0.46 
20,000 to 30,000 AADT 73 23197 20627 -4.4 -11.08 17.39 13.63 0.63 
> 30,000 AADT 40 46291 42225 -0.7 -8.78 20.30 16.58 0.94 
Interstates 119 22443 22106 -0.2 -1.50 28.59 22.21 0.84 
Expressways 76 7298 5722 -2.3 -21.60 48.05 20.52 0.81 
Principal Arterials 256 10459 9368 -1.7 -10.43 24.54 16.61 0.95 
Minor Arterials 276 6010 5570 -1.2 -7.33 38.01 47.80 0.87 
Major Collectors 756 2028 1997 -0.3 -1.53 47.51 83.36 0.89 
Minor Collectors 15 3250 3827 0.4 17.77 43.17 113.12 0.95 
Local Roads 6 1064 1364 0.4 28.17 136.50 178.30 0.11 
Ramps 224 2692 2416 -1.1 -10.26 64.28 50.08 0.80 

 

 

 
Figure 4-7: Expanded Flows vs. Counts 
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Figure 4-8: Expanded Flows vs. Counts (Log-Log) 

4.4 Data Validation 
Two rounds of data validation were performed, at the pre-expansion and post-expansion stages.  A first 
round of pre-expansion validation checks was performed before any data expansion. These checks 
identify anomalies in particular datasets and potential errors in the data processing steps.  This also 
provides baseline information on biases to guide expansion efforts to reduce bias.  A second round of 
post-expansion validation checks assessed that the expansion removed as much bias as possible.  

These checks ensure the integrity of the raw data and its processing, as well as the reasonableness and 
effectiveness of the expansion process.  These checks demonstrate that the raw data provides valuable 
data on travel behavior and patterns; that the expansion corrects for known and observed biases; and 
that the resulting final dataset delivered is suitable for modeling and other analysis purposes.   

4.4.1 Pre-Expansion Data Validation 
To ensure the quality of the processed OD data output, RSG reviewed summary reports and performed a 
series of reasonability checks. These reports review both the underlying data and the identified trips and 
inferred attributes.  

Input data are reviewed to ensure sufficient numbers of devices are consistently seen throughout the 
study month and that inferred trip making is consistent across the study month. Post processed data are 
examined to ensure the magnitude of inferred cluster types are reasonable, and that temporal patterns 
in trip making are reasonable for all trip type combinations (i.e., home to work trips versus work to 
home trips). Processed results are also mapped to ensure trip end densities align spatially with known 
land-use densities.   

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

AA
DT

Volume

Expanded Volumes vs Counts



Appendix T – Travel Forecasting Model 
Documentation  

March 8, 2023 Page 47 of 70 

 

Figure 4-9 presents a summary of Mid-States LBS data trip counts for the seven origin/destination type 
combinations.  Figure 4-10 and Figure 4-11 present the average weekday trip counts by time of day for 
these same trip types for residents and visitors, respectively. These plots show that inferred LBS trips are 
balanced between trip types (home-to-work vs work-to-home) and occur at expected times of day. 

 
Figure 4-9: Passive Data Trip Summary 
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Figure 4-10: Average Weekday Hourly Trip Distribution - Residents 

 
Figure 4-11: Average Weekday Hourly Trip Distribution - Visitors 
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4.4.2 Post-Expansion Data Validation 
There are validation checks and expansion revisions throughout the expansion process. It remains 
critical to review the final results and factors applied at the completion of this process. RSG reviewed 
two main criteria comparing the expanded passive data to the initial pre-expansion data: an aggregate 
zonal comparison and a cell-level matrix comparison. 

At the overall zonal level, the average expansion factor applied was 2.37. Given the wide ranges of the 
pre-expansion and post-expansion data, the expansion factors were normalized as part of the data 
validation. 96.1 percent of zones fell within a normalized factor of 0.0 and 2.0. Zones with expansion 
factors beyond 4.0, representing less than 0.2 percent of zones, were reviewed and deemed acceptable 
due to several factors. Figure 4-12 presents the distribution of zones across the range of observed 
normalized expansion factors. 

 

Figure 4-12: Zonal Expansion Factor Histogram 

Examination of cell-level expansion factors for individual OD pairs confirms the expansion results in 
reasonable changes. Figure 4-13 shows the similarity in the OD patterns and the bounds enforced on the 
expanded trips. The correlation coefficient from this comparison was 0.737 which demonstrates that the 
expansion process did not distort valuable information from the passive LBS data. 
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Figure 4-13: Cell-Level Expansion Factors 
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5 THREE-STEP TRAVEL DEMAND 
MODEL DEVELOPMENT 

The Mid-States Corridor model development used an ensemble forecasting approach which combines 
traditional trip generation and distribution methods with machine learning and trend-based methods 
which use longitudinal passive data.   

Ensemble modeling has been one of the most powerful techniques to emerge from machine learning 
and data science to date.  The approach is increasingly relied upon across a wide range of industrial 
applications from meteorology to credit scoring to market research and targeted advertising.  It is based 
on the fact that all models have error, but different models have different errors. Multiple models 
together can make more accurate forecasts, to the extent their errors offset.  This approach also 
provides cross-validation of component models since differences in their forecasts should be plausible 
and logically related to the differences in assumptions and methodologies.  The ensemble approach 
generally uses multiple simple models or one complex and several simple models. The alternative 
approach of activity-based modeling attempts to address model limitations with added complexity.   

A data-driven three-step model, leveraging passive data OD matrices, was developed for this study. Trip 
generation, trip distribution, and assignment steps were performed along with a pivoting process using 
distribution-generated OD matrices and passive data OD matrices (see Section 4), which is applied prior 
to assignment. These processes are summarized in Figure 5.1 and detailed in the following subsections. 

 

Network Configuration

Trip Generation

Trip Distribution

Matrix Pivoting

Assignment

Figure 5-1: Model Flowchart 
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5.1 Trip Generation 
Regression models using zone-level expanded passive data and zone level socio-economic data were 
developed to estimate the number of home-based trip productions by each zone based on the number 
of households and their attributes. Trip generation models were developed for the following five trip 
types: 

• Passenger Trips: 

o Short-Distance Internal, 

o Long-Distance Internal, 

o External 

• Heavy-Truck (MUT) Trips: 

o Internal 

o External 

Passenger trips were segmented by distance and location. Short-distance and long-distance trips were 
defined as those whose trip lengths fell below or above 50 miles, respectively. Internal zones were 
identified as zones within the 12-county study area with available household data in the Mid-States 
TDM. Zones beyond the boundary of the internal zones were identified as external zones.  

Table 5-1, found on the following page, presents the trip generation models. This table includes the 
model specifications, estimated coefficients and calibrated coefficients. A blank calibrated value 
indicates that the final specification did not change from the estimated coefficients. 
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Table 5-1: Trip Generation Parameters 

Variable Name Est. Value Cal. Value T-Stat 
Short Distance Internal (R-squared: 0.8583) 
Food & Lodging Employment 5.932 4.379 9.364 
Retail Employment 3.963 4.266 9.371 
Service & Office Employment 1.598  19.741 
Agriculture & Industrial Employment 0.629 0.489 6.109 
Population/Workers Ratio -0.042  16.561 
Population 1.738  -17.380 
Long Distance Internal (R-squared: 0.6817) 
Food & Lodging Employment 0.798 0.786 19.363 
Retail Employment 0.055 0.108 1.719 
Service Employment 0.500 0.544 5.834 
Professional Employment 0.047 0.052 7.293 
Agriculture & Industrial Employment 0.152 0.155 17.516 
Population-Nonworkers Ratio 0.015  1.643 
Population 0.016  17.388 

Passenger External (R-squared: 0.1873)8 

Population-ExtDistance ratio 1463.518  0.589 
PopDist * Employment -0.109  0.00 -0.184 

Heavy-Truck Internal (R-squared: 0.6421) 

Agriculture Employment 0.243  19.062 
Industrial Employment 0.122  48.691 
Food, Lodging, & Retail Employment 0.026  8.839 
Heavy-Truck External (R-squared: 0.1723) 
Employment-ExtDistance Ratio 188.696  0.144 
EmpDist * Population -0.023  0.00 0.046 

5.2 Trip Distribution 
The functional form of the distribution model is shown in Figure 5-2. The model uses a doubly 
constrained gravity model for the three internal trip purposes (short-distance passenger, long-distance 
passenger, and MUT). This function is applied separately for each of the trip types. 

 
8 The initial external rates (for both passenger and heavy truck) appear low likely due to relative lack of data for 
external trip making. External trip forecasting was greatly improved by the pivoting process. See Section 5.3. 
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Where:  Tij =  the forecast flow produced by zone i and attracted to zone j 
 Pi = the forecast number of trips produced by zone i 
 Aj = the forecast number of trips attracted to zone j 
 dij =  the impedance between zone i and zone j 
 f(dij) = the friction factor between zone i and zone j  

Figure 5-2: Gravity Model Functional Form 

The inputs to trip distribution include the pivoted outputs from trip generation: row “productions” and 
column “attractions” by TAZ, as well as a generalized cost impedance matrix. This matrix represents the 
cost of travel between each pair of TAZs. The impedance is used in the trip distribution model to 
estimate friction factors, which represent the impact of travel time on the likelihood of travel and are 
calibrated so that observed trip lengths and times are reasonable and match patterns from the observed 
passive data.  

The friction factor equations take the form shown in Figure 5-3, with the estimated parameter values 
shown in Table 5-2.  

)()(
ijdcb

ij
ij ed

adf
∗

=  

Where:  f(dij) = the friction factor between zone i and zone j 
 dij =  the impedance between zone i and zone j 
 a,b,c =  constants derived for each trip type to replicate survey data  

Figure 5-3: Friction Factor Functional Form 

Table 5-2: Estimated Friction Factor Parameters 

Trip Type A B C 

Short Distance 5705.345 -1.275 -0.0571 

Long Distance 1.0321 2.542 -0.0316 

MUT 12252.37 -1.403 -0.0047 

5.3 Pivoting & Traffic Assignment 
The Mid-States travel model adopts a data-driven approach to traffic assignment. Future year trip 
matrices “pivot” off of observed base year trip matrices. Pivoting is based on the data expansion from 
the LBS passenger data and GPS truck data. 
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Results from the demand model base and future-year runs, along with the observed passive data 
demand matrices, are used as inputs to generate future-year pivoted matrices. When a future year 
demand model is run, the growth from the base year run is calculated and applied to the observed 
passive data from the base year. 

Besides the cases where observed data is lacking, the pivoted estimation is generally defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  (𝐹𝐹𝐹𝐹𝑃𝑃𝐹𝐹𝐹𝐹𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −  𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) + 𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚   

The use of this data-driven pivoting approach is increasingly common (e.g., the statewide models of 
Indiana, Illinois, Tennessee, North Carolina and Michigan) as a way to leverage the availability of big 
data. This process also allows the model to reproduce observed travel more faithfully because these 
pivoted forecasts are anchored to current real-world traffic conditions observed through passive data.   

Trips from this pivoted matrix are assigned by period using multi-class equilibrium with generalized 
costs. The assignment uses tri-conjugate Frank-Wolfe algorithm, which is Caliper’s Corporation’s9 
implementation of Daneva and Lindberg (2003). The assignment includes two vehicle classes defined as 
Autos and Multi-Unit Trucks (MUT). Although “Autos” are a well-recognized vehicle class in modeling, 
within the passive data of the Midstates model, this “Auto” class encompasses other vehicle classes 
beyond passenger automobiles. These include buses, commercial vehicles and light trucks.  

Generalized cost is segmented by two vehicle types – auto and multi-unit trucks. Generalized cost 
variables are used for network skimming and assignment and are determined from a linear combination 
of actual and weighted or perceived impedance variables. The actual impedance variables include free 
flow times, congested times and out-of-pocket travel costs. The perceived impedance variables include 
weighted delay and weighted distance by facility type.  

The weighted delay captures the fact that people generally perceive a minute of travel in heavily 
congested conditions as more stressful than a minute of travel in free flow conditions. See Table 5-3. It 
is also a proxy for reliability. The facility-type distance weights can capture the fact that vehicles, 
especially trucks, are generally less likely to use minor facilities unless they offer an obvious travel time 
advantage. See Table 5-4. 

These values were specified based on work in the Tennessee statewide model, which used data from 
previous studies and calibration through a genetic algorithm to obtain the values presented in Table 5-3 
and Table 5-4. Other inputs required to calculate generalized cost include travel time, posted speed, 
tolls, functional class and link length. 

In addition to the actual measured travel times and costs, the assignment pathfinding includes a 
distance-based impedance term. The weights were estimated by running a genetic algorithm, which 
repeatedly runs the traffic assignment and attempts to find weights that reduce the loading error 
(percent RMSE). Major facility types generally have a lower weight than minor facility types. The facility 
type differences are most pronounced for trucks, which generally prefer using major facilities that have 
wider lanes. 

 

 
9 Caliper Corporation is the provider of TransCAD, the modeling software used for the Mid-States model. 
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Table 5-3: Variables Considered for Generalized Cost Estimation 

Variables  Car 
Penalty 

MUT 
Penalty 

Value of Time ($) $12.60 $55.10 
Perceived Delay (minutes) 1.25 1.23 

 

Table 5-4: Distance Weight by Vehicle and Facility Type 

Facility Type Cars MUT 

1 – Freeways and internal 
centroid connectors 0.45 0.86 

2 – Expressways 0.6 1.04 

3 – Ramps and Major 
roadways 0.7 1.15 

4 – Minor roadways 0.8 1.26 

5 – Minor roadways in urban 
areas 0.9 1.39 

6 – All others 1 1.5 

 

Validation of the base year model assignment is documented in Section 6. 

6 DAILY TRAFFIC ASSIGNMENT 
AND VALIDATION 

Daily Assignment Validation 
Traffic assignment validation is a key step in travel demand modeling. The Mid-States TDM traffic 
assignment validation includes a detailed and robust validation for the 12-County Study Area and overall 
validation statistics for the whole model area. Traffic assignment validation statistics include daily 
percent loading error (%Error), Percent Root Mean Square Error (%RMSE), and Mean Absolute 
Percentage Error (MAPE) calculated based on field collected daily traffic volumes and model assigned 
daily traffic flows along key roadways.  

Typically, multi-state TDMs encompassing vast rural areas such as the Mid-States TDM include a high 
concentration of low-volume highways, including interstates. The validation statistics for interstates in 
rural settings are typically higher than in urban TDMs, where interstate traffic volumes are significantly 
larger. Additionally, most statewide TDMs report their validation statistics by traffic volume range rather 
than by functional classification to avoid confusion with urban model guidelines. 
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Table 6-1 shows the assignment validation statistics for all vehicle classes within the 12-County Study 
Area. The table shows the daily percent loading error (%Error), percent root mean squared error 
(%RMSE), and mean absolute percentage error (MAPE) by volume group.  

Table 6-1: Daily Assignment Validation Statistics for the 12-County Study Area 

Roadway Daily 
Traffic Volume % Error %RMSE MAPE 

 
< 5,000 -4.14 37.1 55.1  

5,000 to 10,000 -4.61 12.7 13.05  

10,000 to 20,000 -4.25 11.6 8.6  

20,000 to 30,000  0.38 5.93 0.31  

> 30,000  0 0 0  

Total -4.4 23 47.4  

 

As can be seen in Table 6-1, %RMSE values for roadways with more than 5,000 daily traffic volume were 
less than 15 percent. The 12-County Study Area achieves a percent error of -4.4 percent and an RMSE is 
23 percent. 

Figure 6-1 shows a scatterplot of the traffic counts versus overall model loading for the 12-County Study 
Area. The model volumes and traffic count generally show reasonable consistency.  The r-squared value 
is 0.96, which displays high correlation between assigned volumes and counts. 

 

Figure 6-1: Daily Volume and Count Correlation 

Table 6-2 shows traffic assignment validation statistics for the entire modeled area and compares these 
statistics with validation criteria from other states. As shown in Table 6-2, %RMSE values for the Mid-
States TDM roadway segments by traffic volume ranges alongside the average %RMSEs for 10 statewide 
TDMs reported in NCHRP Report 836-B Task 91 (AASHTO, 2010). The 10 states in NCHRP Report 836-B 
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Task 91 are Alabama, Arizona, Florida, Indiana, Maryland, Michigan, Ohio, Oregon, Tennessee, Texas, 
Utah, and Wisconsin. This table also shows %RMSE acceptable limits from the Florida and Virginia 
Departments of Transportation. These %RMSE limits are widely used for statewide model validation in 
the United States. For all volume ranges, the Mid-States TDM %RMSE is either lower or almost equal to 
the average validation for the 10 statewide TDMs and are well within the validation criteria from Florida 
and Virginia. 

Table 6-2: Daily Assignment Validation Statistics for the Entire Modeled Area  

Roadway Daily 
Volume Range 

% RMSE 
Mid-States TDM NCHRP 08-361 Florida2 Virginia3 

1 5,000 45.96 92.2 65 100 
5,000 10,000 21.4 51.2 45 45 

10,000 20,000 18.49 46.7 35 35 
20,000 30,000 12.75 32.4 30 27 

>30,000 23.6 22 25 25 
All 35 53 45 40 

1 NCHRP Report 08-36B Task 91 (AASHTO, 2010) 
2 Urban Model Development Technical Report (Michigan DOT, 2019) 
3 Virginia DOT Travel Demand Modeling Policies and Procedures (VDOT, 2014) 

 

Figure 6-2 graphically depicts model loading errors. 
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Figure 6-2: Model Loading Error 
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7 POST PROCESSING TOOLS 
7.1 Post Processing Tools Description  
Most performance measures were based upon calculations of vehicle miles traveled (VMT) and vehicle 
hours traveled (VHT). Depending upon the specification of the performance measures, VMT and VHT 
were calculated separately for autos and multi-unit trucks, as well as for specific origin-destination 
patterns. See Appendix A for details. VMT and VHT were calculated directly from assignment output 
files. 

7.2 BCA Tool (RSG) 
For the Mid-States model, RSG developed a benefit/cost analysis (BCA) post-processing tool. This tool 
estimates monetized benefits associated with multiple well-established factors including safety, travel 
time, and travel-time reliability. 

A summary of the monetized benefits included in the BCA tool is summarized in Table 7-1. 

Table 7-1: Benefit Factors 

# Benefit Category Type Quantities 

1 Safety Safety Link 
Fatal, Injury, 
Property-Damage 
Only Crashes 

2 

Travel Time  
a) Passenger 
Vehicle 
b) Truck 

Mobility OD 
Minutes of travel 
time saved by 
mode 

3 

Travel Time 
Reliability 
a) Passenger 
Vehicle  
b) Truck 

Mobility OD 

Decrease in travel 
time variability 
(standard deviation 
of travel time) 

 

The approach for incorporating each benefit factor is addressed below, including the methodology and 
monetization assumptions. 

7.2.1 Safety 

The safety benefit factor seeks to monetize the impact of changes in forecast motor vehicle crashes.  
The valuation of safety benefits has been a part of transportation BCA for decades; it was one of the 
original benefits in AASHTO’s early Red Books in the 1960’s and 1970’s. Crash prediction methods used 
in BCA have varied, but AASHTO’s Highway Safety Manual (HSM) is authoritative and widely used. RSG 
has used the HSM approach in various locations around the country and has found that it seems to work 
reasonably well, requiring only modest calibration coefficients.  

The monetization of predicted crashes has also varied over time and place, but the release of the federal 
government’s guidance on “value per statistical life” (VSL) has standardized the monetization of fatal 
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crashes. Monetization of injury and PDO crashes still varies, but increasingly, injury crashes are valued in 
relation to the VSL along the lines used in the benefit calculator. Although there is uncertainty in any 
method, the methods for valuing safety benefits are well established and can be used with a relatively 
high degree of confidence.   

Methods from the Highway Safety Manual (HSM) (AASHTO, 2010) are used for estimating safety 
benefits. The methods are implemented in the benefit calculator as they are implemented in FHWA’s 
Interactive Highway Safety Design Model (IHSDM10) and documented in the Engineer’s Manuals 
included in the tool’s download with the help files. The Engineer’s Manuals include all details for 
implementing the method, including estimated parameter values. In general, however, the method 
predicts the number of crashes using Safety Performance Functions (SPFs) for roadway segments (links) 
and intersections (nodes) together with Crash Modification Factors (CMFs).   

The total annual number of crashes (N) are the sum of crashes along road segments (Nrs) and crashes at 
intersections (Nint).    

𝑁𝑁 = 𝑁𝑁𝑜𝑜𝑜𝑜 + 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 

Both Nrs and Nint are predicted as the product of the number of crashes predicted by a SPF (NSPF), any 
relevant CMFs, and a calibration factor (Cr) that can be developed for particular jurisdictions or 
geographic areas to reproduce local observed crash rates or totals.  

𝑁𝑁𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑜𝑜 × 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜 × 𝐶𝐶𝐶𝐶𝐹𝐹1 × … × 𝐶𝐶𝐶𝐶𝐹𝐹𝑖𝑖 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑜𝑜 × 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝐹𝐹1 × … × 𝐶𝐶𝐶𝐶𝐹𝐹𝑖𝑖 

CMFs adjust baseline crash rates for specific conditions. CMFs can take various functional forms. Some 
CMFs are included as part of HSM/IHSDM, but additional CMFs can be found online.11 

The SPFs predict the number of roadway segment or intersection crashes per year for nominal baseline 
conditions. Typically, for roadway segments, the SPFs take the form: 

𝑁𝑁𝑆𝑆𝑃𝑃𝐹𝐹𝐹𝐹𝐵𝐵 = 𝛼𝛼(𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽)𝛾𝛾 × 𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃ℎ (𝑚𝑚𝑃𝑃) 

Where α, β, and γ are parameters for a given facility type and sometimes other specifics such as number 
of lanes. Typically, for intersections, the SPFs take the form: 

𝑁𝑁𝑆𝑆𝑃𝑃𝐹𝐹𝑃𝑃𝐿𝐿𝑃𝑃 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑃𝑃𝐿𝐿𝛽𝛽𝑃𝑃𝐿𝐿ℎ𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝐹𝐹𝑚𝑚𝑃𝑃𝛽𝛽𝑒𝑒𝑒𝑒𝐹𝐹𝑃𝑃𝐵𝐵𝑒𝑒ℎ + 𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝛾𝛾𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝐹𝐹𝑚𝑚𝑃𝑃𝛽𝛽𝑒𝑒𝑒𝑒𝐹𝐹𝑃𝑃𝐵𝐵𝑒𝑒ℎ 

Where α, β, and γ are parameters for a given facility/area type. Some basic processing of the network 
data is required to compute ADTonHighestVolumeApproach and ADTonLowestVolumeApproach by 
joining highway network node and link data and these calculations are built into the benefit calculator.  

CMFs which use information available for the whole model network, such as number of lanes and truck 
percentage are included in the benefit calculator. The method predicts total crashes, which are split into 
crash severity categories (fatal, injury, and property-damage-only (PDO)).  

The monetary value of fatality and injury collisions was calculated based on the US DOT “Guidance on 
Treatment of the Economic Value of a Statistical Life (VSL) in U.S. Department of Transportation 

 
10 http://www.fhwa.dot.gov/research/tfhrc/projects/safety/comprehensive/ihsdm 
11 http://www.cmfclearinghouse.org 
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Analyses – 2015 Adjustment”, which gives the valuation of fatality collisions at $9.4 million. The 
valuation is based on empirical studies and is defined as the additional cost that individuals would be 
willing to bear for improvements in safety (that is, reductions in risks) that, in the aggregate, reduce the 
expected number of fatalities by one. For injury collisions, the US DOT approach monetizes by applying a 
factor to the VSL based on severity (AIS1-5). Using the AIS2 (moderate) factor of 0.047 results in a 
valuation of injury collisions at approximately $441,800. For property-damage-only (PDO) collisions, we 
selected a value of approximately $1,522. Table 7-2 presents the parameters used for crash 
monetization.  

Table 7-2: Final Crash Monetization Parameters 

Parameter Value 
Fatality Cost $9,400,000 
Injury Cost $441,800 
Property-Damage-Only Cost $1,522 

 

The motor vehicle crashes safety benefit calculation is implemented as a series of link calculations. A 
link-based approach is preferred to a zone-based approach since it avoids issues related to aggregation 
bias caused by using an area-based unit of analysis for network-level phenomena. The generic SPF 
illustrated in the Method subsection above is implemented separately for each functional class – 
freeways, rural two-lane highways, rural multi-lane highways, and urban/suburban arterials. The CMFs 
corresponding to each functional class SPF are estimated using various network attributes such as lane 
width, shoulder width, grade, presence of median/barrier, lighting, etc. Default or average values of 
certain network attributes are used when not available. Specifically, average lane widths and shoulder 
widths assumptions are based on FHWA’s Highway Functional Classification Concepts, Criteria and 
Procedures (Table 3-5)12. In cases where the appropriate network attributes are not available, the CMF 
value is set to 1.0.  

Since the benefits calculator operates at the link level, node level attributes for intersection SPFs are 
computed via link level calculations. This involves identification of intersections (non-centroids and 
nodes connected to more than two links) by their control type and computation of the minimum and 
maximum volume at the intersection. Since all the calculations in the benefits calculator are 
implemented at the link level, each intersection will appear in the processor as many times as the 
number of links connected to it. Therefore, to avoid double counting, the SPF for each intersection is 
divided by the number of links it is connected to.  

For the Mid-States application, the CMFs for intersections are set to 1.0 since the required operational 
details (lighting, angle, etc.) are not available in the network. For pedestrian crashes, a medium 
pedestrian activity is assumed. Finally, a multiplicative calibration factor is added to each SPF which is 
set to 1.0 for the Mid-States application.  

The monetization rates for crashes vary by crash types – fatal, injury and PDO crashes – as described in 
the Monetization subsection above. Distribution factors are used for splitting total crashes into different 
crash categories. Crash distribution factors were determined using regional data and are summarized in 
Table 7-3.  

 
12 https://www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf 
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Table 7-3: Crash Distribution Factors by County 

County Fatality Injury PDO 

CRAWFORD 0.007 0.146 0.847 

DAVIESS 0.023 0.319 0.658 

DUBOIS 0.005 0.206 0.789 

GREENE 0.017 0.192 0.791 

LAWRENCE 0.011 0.220 0.769 

MARTIN 0.021 0.289 0.691 

MONROE 0.002 0.220 0.777 

ORANGE 0.007 0.210 0.782 

PERRY 0.003 0.185 0.812 

PIKE 0.009 0.309 0.682 

SPENCER 0.013 0.227 0.759 

WARRICK 0.005 0.214 0.781 
 

7.2.2 Travel Time 

Travel time savings are a significant benefit factor for most transportation projects, plans, and policies. 

For existing trips, travel time savings are simply the decrease in travel time for that trip. However, when 
trips are induced or suppressed, the benefit is calculated based on consumer surplus theory (as shown 
in Figure 7-1). The basic idea for induced demand is that although the traveler was unwilling to make the 
trip given the original travel time (cost), as the cost decreases, at some point the traveler would choose 
to make the trip. The travel time savings for an induced trip should be measured as any further decrease 
in travel time beyond the point at which the trip is induced.   

In the absence of other information, the “Rule of Half” (ROH) assumes that trips induced between a 
baseline cost and an alternative scenario cost would, on average, be induced at the average of these 
costs and hence should accrue half of the travel time savings as existing trip-makers. In economic terms, 
this benefit for induced demand is the change in consumer surplus, and the ROH amounts to 
linearization of the travel demand function. This method has been applied to user costs and travel time 
savings in particular in the context of transportation BCA for many years and is established good 
practice.13 

 
13 See Abelson, P. and D. Hensher. "Induced Travel and User Benefits: Clarifying Definitions and Measurement for 
Urban Road Infrastructure." In Handbook of Transport Systems and Traffic Control edited by Kenneth J. Button and 
David A. Hensher. Pergamon, 2001. 
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Figure 7-1: Consumer Surplus 

The valuation of travel time is a challenging topic, much debated in literature. Many different studies 
and methodologies have produced a range of estimates of the value of travel time savings. These 
studies help establish a reasonable range of values but can make assignment of a particular value 
difficult. For these reasons, the value of time (VOT) settings are user configurable in the benefit 
calculator so that the default VOT assumptions can be changed.  

US DOT offers guidance on VOT in “Revised Departmental Guidance on Valuation of Travel Time in 
Economic Analysis” 14. This guidance recommends against using separate VOT for different travelers, in 
part to ensure economic analyses do not favor projects or policies beneficial to higher income citizens 
over those beneficial to lower income citizens. While the guidance acknowledges evidence that VOT 
vary by purpose in general, it only recommends differentiating between on-the-clock travel for business 
from all other personal travel (including commuting) if an analysis can support this distinction. The 
benefit calculator, therefore, allows for separate VOT by trip purpose, but we have populated all trip 
purposes with a single VOT of $12.63, derived by adjusting the national VOT for all purposes ($14.10/hr) 
to reflect average incomes in the 12-county study area. 

US DOT guidance acknowledges that the total value of truck time also involves the opportunity cost of 
the time the goods transported are in transit, which varies considerably depending on factors associated 
with the freight being carried, including the rate at which the goods will become obsolete, whether the 
goods are perishable, and dependency on timely delivery of the goods for downstream production 

 
14 2016 Revised Value of Travel Time Guidance.pdf (transportation.gov) 

https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20Travel%20Time%20Guidance.pdf
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processes. As a result, there is not a set recommendation on the total value of truck time. For this study 
a default value of time of $45.00/hr was used for trucks. 

The benefit calculator includes matrix-based calculation of the rule-of-half (ROH) using demand matrices 
and network skims from the travel model to estimate travel time savings including changes in consumer 
surplus. The final ROH based travel time savings are converted to monetary values by multiplying by 
VOT. The temporal discount rate and annualization factor are applied to estimate annual travel time 
savings.   

7.2.3 Travel Time Reliability 

Travel time reliability is a measure of unexpected delay. As defined by FHWA, travel time reliability is the 
consistency or dependability in travel times, as measured from day-to-day and/or across different times 
of the day.15  The SHRP 2 program has conducted considerable research on travel time reliability in 
recent years, and several methods for estimating travel time reliability and its value have now been 
demonstrated. RSG conducted a meta-analysis of the literature, including the AASHTO Redbook16, SHRP 
2 L0317, L0418, L0519, L1120, and C0421. From these various approaches a consensus / ensemble predictor 
was produced for the buffer time index as a function of volume to capacity (v/c) ratio. The various 
published functions are shown together with the ensemble function produced by the meta-analysis in 
Figure 7-2. 

 
15 Travel Time Reliability: Making It There On Time, All The Time. 2006. FHWA, 
http://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm 
16 American Association of State Highway and Transportation Officials (AASHTO), 2010. User and Non-User Benefit 
Analysis for Highways.  
17 National Academies of Sciences, Engineering, and Medicine, 2012. Analytical Procedures for Determining the 
Impacts of Reliability Mitigation Strategies. Washington, DC: The National Academies Press.  
18 National Academies of Sciences, Engineering, and Medicine, 2014. Incorporating Reliability Performance 
Measures into Operations and Planning Modeling Tools. Washington, DC: The National Academies Press. 
19 National Academies of Sciences, Engineering, and Medicine, 2013. Incorporating Reliability Performance 
Measures into the Transportation Planning and Programming Processes. Washington, DC. 
20 National Academies of Sciences, Engineering, and Medicine, 2013. Evaluating Alternative Operations Strategies 
to Improve Travel Time Reliability. Washington, DC: The National Academies Press. 
21 National Academies of Sciences, Engineering, and Medicine, 2012. Improving Our Understanding of How 
Highway Congestion and Pricing Affect Travel Demand. Washington, DC: The National Academies Press. 
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Figure 7-2: Ensemble Predictor of Buffer Time From Meta-Analysis 

The ensemble buffer time function produced by the meta-analysis is given below: 

𝐵𝐵𝐹𝐹𝐵𝐵𝐵𝐵𝑃𝑃𝐹𝐹 𝛽𝛽𝑃𝑃𝑚𝑚𝑃𝑃 = 3.67 × 𝐵𝐵𝑃𝑃𝑃𝑃𝐹𝐹𝐵𝐵𝐿𝐿𝑃𝑃 𝑒𝑒𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃 × ln �
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55

1 + 0.15 × (𝑃𝑃/𝑒𝑒)10

𝑃𝑃𝐵𝐵
𝑃𝑃
𝑒𝑒
≥ 1   33.5 + 15 × (𝑃𝑃/𝑒𝑒)−3

 

The reliability measure and skim are applied as a model post-processor for the estimation of reliability 
benefits for the calculator. The benefit calculator then estimates the reliability benefits using the same 
ROH OD matrix calculation that is used for calculating travel time savings. The reliability benefits are 
converted to a monetary value by multiplying with the VOT parameters described in the Travel Time 
section, above.  Separate calculations are performed for passenger vehicle and truck reliability benefits. 
The temporal discount rate and annualization factor is applied to the total costs to obtain annual costs. 
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8 CONCLUSION 
Advanced travel forecasting tools were developed for the Mid-State Corridor Study. These tools 
represent the state of the practice with regards to Big Data, ensemble forecasting and travel time 
benefits analysis. These tools accurately represent travel behaviors observed over a large multi-state 
region. The travel forecasting model limits extend from Indianapolis into Northern Tennessee to capture 
the full extent of north-south travel patterns that could be attracted to the Mid-State Corridor. 

The travel forecasting model was developed using passive data collected from cell phones and GPS 
devices as the foundation. An extensive process was employed to eliminate inherent biases and format 
the data for model application. The use of Big Data provides unparalleled insights into existing travel 
patterns that were simply not available just years earlier. The model’s RMSE of 23.17 confirms a highly 
accurate model validation that exceeds standard of practice validation targets. 

A three-step model was developed to forecast travel in the future. However, this standard approach was 
bolstered by ensemble techniques, which combine traditional trip generation and distribution methods 
with machine learning and trend-based methods using longitudinal passive data. This approach 
recognizes that all models have errors but utilizing multiple different models cancels some of the errors, 
resulting in a more refined forecast.  

Assumptions regarding future growth and socioeconomic indicators were based on forecasts published 
by the applicable state and metropolitan planning organizations. The travel forecasting model’s spatial 
structure (TAZs) were fully nested within that of the Indiana Statewide Travel Demand Model to 
promote consistency with the state’s forecasting tool. This consistency was reinforced by regular 
coordination with the Indiana Office of Planning & Programming that occurred during development of 
the travel forecasting model. 

A range of post-processing tools were used to quantify and compare project benefits. These benefits are 
detailed in Appendix A – Transportation Performance Measures. These including analyses of traffic 
assignments to measure performance on core goals. These core goal performance included improved 
accessibility between key travel pairs, improved labor force access to employment centers, efficiencies 
in truck freight movements and improved access to major intermodal centers. The travel model also was 
used to measure performance on secondary goals which reflected other desirable outcomes. These 
included crash reductions at key locations and reduced congestion within Dubois County.  
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