APPENDIX V - LOCAL IMPROVEMENTS ANALYSIS

Mid-States Corridor
Tier 1 Environmental Impact Statement

Prepared for
Indiana Department of Transportation
Mid-States Corridor Regional Development Authority

FEBRUARY 10, 2022 UPDATED AUGUST 14, 2023

Prepared by
Mid-States Corridor Project Consultant

App V - Local Improvements

TABLE OF CONTENTS

1. INTRODUCTION 3
2. Description of Hybrid Alternative 4
Cost, Impacts, Core Goal Performance 9
Secondary Goal Performance. 13
Safety and Travel Time Methodology 13
Identification and Evaluation of Individual Components 13
3. Other Local Improvements. 13
4. Evaluation Of Local Improvements - All Routes 22
Costs, Impacts and Benefits 24

App V - Local
 Improvements

1. INTRODUCTION

In response to comments on the DEIS, the following modifications were made to Appendix V:

- This appendix was provided to address provisions of the November, 2021 Bipartisan Infrastructure Law and relevant FHWA guidance memoranda. The relationship of this appendix to that law and those memoranda has been made clearer.
- Figure $\mathbf{2}$ has been revised to correct a minor inaccuracy in the depiction of Alternative \mathbf{P}_{231}.
- The headers of Table $\mathbf{3}$ through Table $\mathbf{6}$ have been revised to be consistent.
- A reference to further Tier 1 refinement of the Local Improvements has been removed from Section 2. Further refinement of the Local Improvements will occur during Tier 2 studies.

This Appendix describes the process which identified local improvement components for all alternatives. After defining key terms, the steps which identified the local improvements are summarized in this Introduction. These steps are described in detail in the remainder of this document.

- Hybrid alternative. This is an alternative which combines new-terrain construction with upgrades of existing state-jurisdictional highways.
- Local improvements. Most of these are upgrades to existing local highways to add passing lanes and make other improvements to the typical cross-section of these highways. These are between about one and one-quarter and three and one-quarter miles in length. One local improvement consists of access management within Jasper which does not include any construction outside of the existing right-of-way. These locations were identified by INDOT staff.
- Local improvement alternative. A preliminary alternative consisting only of local improvements at 18 locations within the Study Area.

Consideration of hybrid alternatives. As described in Section 2.4.2.1 of Volume I, part of the alternative development process considered combining upgrades of some portions of existing state highways with the alternatives carried forward in the Screening of Alternatives. Three agencies (USEPA, IDNR and IDEM) requested alternatives which consisted largely or entirely of upgrades to existing highways. Existing state highways which could be upgraded as part of an alternative were identified for all alternatives. The most promising of these was a variation of Alternative \mathbf{P} which combined a newterrain corridor in Dubois County with an upgrade of US 231 in Martin, Daviess and Greene counties, but this alternative performed poorly on core goals. These included:

- Goal 1 - Increase Accessibility to Major Business Markets
- Goal 2 - Provide More Efficient Truck/Freight Travel in Southern Indiana
- Goal 3 - Increase Access to Major Intermodal Centers

Since hybrid alternatives did not perform well on core goals, they were not considered further.
Some local improvements in the hybrid alternatives supported secondary project goals. The local improvements also were evaluated on an individual basis for their performance on secondary project goals. These included local safety and travel time benefits. Noteworthy local benefits were identified for

App V - Local
 Improvements

these local improvements. Similar benefits were also identified for local improvements for alternatives other than Alternative P. The local improvements for other alternatives also supported secondary goals.

Each alternative was modified to incorporate associated local improvements. The local improvements became part of each alternative. Each alternative is evaluated on the entire "package" of a new-terrain alignment and associated local improvements.

Consideration of a Study-Area wide local improvement alternative. To fully respond to the agency comments requesting consideration of existing highway upgrades, a "local improvements" alternative also was evaluated. The alternative included the 18 local improvements associated with the five alternatives carried forward. That alternative performed poorly on project core goals. It has only six to 15 percent of the labor force access benefits provided by Alternatives M, O and P (the higher performing alternatives). Likewise, it has only three to eight percent of the truck hours saved provided by these three alternatives. See Table $\mathbf{1 3}$ through Table $\mathbf{1 6}$ for comparisons on all core goals.

In response to comments on the DEIS, the following clarification is offered. Portions of this analysis were provided to address the provisions of the November, 2021 Bipartisan Infrastructure Law and FHWA December 16, 2021 memorandum, "Policy on Using Bipartisan Infrastructure Law Resources to Build a Better America." This memorandum emphasized the maintenance and upkeep of existing transportation infrastructure.

The Hybrid Alternative in Section 2, \mathbf{P}_{231} and the Local improvement Alternative in Section 4 were considered to determine whether an alternative which deemphasized new road construction or which did not provide for any new road construction could address the project goals.

Since the DEIS was published, the December 2021 FHWA memorandum was superseded by a February 23, 2023 memorandum with the same title. The February 2023 memorandum emphasizes that maintaining existing roads and highways in a state of good repair is an important priority for Federal funding. It also contains no language discouraging the use of Federal-aid highway dollars for new road and bridge construction.

2. DESCRIPTION OF HYBRID ALTERNATIVE

Hybrid alternatives are supported by several agency comments received early in the project. These requested that alternatives emphasize upgrades to existing facilities rather than new terrain alternatives. Comments included:

- USEPA's Sept. 12, 2019 comment letter suggested that the project "... add passing lanes, increase shoulder widths, add turn lanes and traffic lights at intersections."
- IDNR's March 27, 2020 comment letter stated, "It is strongly recommended that few new highways be created, while existing highways and major roads are enhanced."

App V - Local Improvements

- IDEM's September 12, 2019 comment letter stated, "IDEM prefers alternatives that restrict as much of the project as possible to existing road alignments as the best option for avoiding and minimizing impacts to waters."

The Screening of Alternatives Report (see Appendix D) considered one preliminary alternative (Alternative R) which was almost entirely an upgrade of an existing highway, US 231 . Alternative \mathbf{R} had high impacts to local communities such as Huntingburg, Jasper, and Loogootee. It also performed poorly on core goals. It provided only 15 to 20 percent of labor force access benefits of the three other North Central alternatives. Likewise, it provided only four to six percent of the truck hour savings as the three other North Central alternatives. See Table 3-2 in the Screening of Alternatives Report. It was not identified as an alternative carried forward.

For the five alternatives carried forward, consideration was given to combining new terrain alignments in Dubois County with upgrades to existing highways between Dubois County and I-69/SR 37.

State highways proximate to each alternative were identified. Figure $\mathbf{1}$ shows each of the alternatives carried forward along with parallel state-jurisdictional highways which were considered for upgrades.

A qualitative engineering feasibility analysis was made for the existing highways associated with each alternative. Table 1 presents the results of this assessment.

MID-STATES CORRIDOR

App V - Local Improvements

Figure 1 - Comparison of Existing Highways in Relation to Alternatives

MID-STATES CORRIDOR

App V - Local Improvements

Table 1 - Engineering Assessment of Potential Local Highway Upgrades for Hybrid Alternatives

Alternatives	Mid-States Corridor Summary Assessment of Potential Existing Facility Upgrades in Section 3 for Routes B, C, M, O and P													
Rating	Category	Alternative B			Alternative C			Alterative M			Alternative 0		Alternative P	
		New Aligmnt.	SR 56	SR 257	New Aligmnt.	US 231	US 50/150	New Aligmnt.	US 50	SR 450	New Aligmnt.	SR 56	New Aligmnt.	US 231
Engineering	End to End Segment Lengths in Section 2 and 3 (Miles)	32.9	35.2		40.4	45.8		62.3	65.6		53.2	53.4	53.6	52.1
	Percentage within Study Band	N/A	-1	-2	N/A	-2	-2	N/A	-1	-2	N/A	-1	N/A	2
	Functional Class Designation	N/A	Major Collector	Major Collector	N/A	Other Principal Arterial	Other Principal Arterial	N/A	Other Principal Arterial	Major Collector	N/A	Minor Arterial	N/A	Other Principal Arterial
	Overall Ease of Upgrade													
	Quality of Existing Pavement	N/A	0	1	N/A	2	2	N/A	1	0	N/A	1	N/A	2
	Existing Horizontal Alignment	N/A	1	1	N/A	1	1	N/A	-1	-2	N/A	-1	N/A	1
	Existing Vertical Alignment	N/A	1	-1	N/A	0	1	N/A	0	-2	N/A	-1	N/A	0
	Maintenance of Traffic, Utility Relocations, Constructability	N/A	0	0	N/A	-1	-2	N/A	-1	-2	N/A	-1	N/A	0
	Require bypasses of towns/communities	N/A	0	-1	N/A	-2	-1	N/A	0	-1	N/A	-2	N/A	-2
Selected Impacts	Residential/Business Relocation	N/A	-1	-1	N/A	-1	-1	N/A	-1	-2	N/A	-2	N/A	-1
	Local Access	N/A	-1	-1	-1			N/A	-1	-2	N/A	-2	N/A	-1
Construction Costs	Likelihood of Capital Cost Savings over New Terrain	N/A	0		N/A	-2		N/A	-2		N/A	-1	N/A	0

App V - Local Improvements

From this qualitative engineering assessment, US 231, evaluated in relation to Alternative \mathbf{P}, was the only potential existing facility upgrade that resulted in an overall positive rating for potential feasibility. Based on this a hybrid version of Alternative \mathbf{P} was selected for an evaluation of costs, impacts and benefits. This hybrid version of Alternative \mathbf{P} was designated as the \mathbf{P}_{231} variation. It combined a Super-2 facility type in Dubois County with upgrades of large portions of US 231 in Martin, Daviess and Greene counites. In response to comments on the DEIS, clarification is offered that \mathbf{P}_{231} includes no new terrain portions in Martin or Daviess counties. ${ }^{1}$

The \mathbf{P}_{231} variation did provide lower costs and impacts. However, its performance on core goals was much poorer than the Super-2 and expressway variations of Alternative P. It provided only 14 to 15 percent of the labor force access benefits of the Super-2 and expressway variations. It actually had negative benefits on the truck hour savings measure. See Table 5. The full comparison is provided in the following sections. Figure 2 shows the variations of Alternative P. Alignments labeled " P " represent the Super-2 and expressway variations, and those labeled " P_{231} " are the P_{231} variation. This figure has been updated in response to comments on the DEIS to more clearly portray \mathbf{P}_{231}.

[^0]
App V - Local Improvements

Figure 2 - Alternative P Variations, including \mathbf{P}_{231} Variation

Cost, Impacts, Core Goal Performance

This cost, impact and benefit comparison was conducted in mid-2021. This comparison included only the costs, impacts and benefits of the new terrain and the hybrid variations. It does not reflect any of the Local Improvements described in Section 3. Due to minor refinements to Alternative \mathbf{P} subsequent to this analysis, the costs, impacts and benefits may differ slightly from those shown elsewhere in this EIS. All costs and impacts assume a western bypass around the City of Loogootee.

Figure 2 shows the three variations of Alternative P.
The P_{231} variation has a significant cost advantage. Following are the construction costs for each. These costs were estimated using the methodology described in Appendix E. They were made using the working alignments under consideration in mid-2021.

- P_{231} variation - $\$ 381$ million

App V - Local
 Improvements

- P Super-2 variation - $\$ 620$ million
- P Expressway variation - $\$ 901$ million

Table $\mathbf{2}$ compares impacts to key resources for the three variations of Alternative P.
Table $\mathbf{2}$ - Impact Comparison of Alternative \mathbf{P} Variations

	Impact		
	\mathbf{P}_{231}	P Super-2	P Expressway
New Right-of-Way (acres)	1,433	2,105	2,759
Floodplains (acres)	150	150	195
Wetlands (acres)	40	49	67
Streams/Rivers (linear ft)	90,600	123,300	161,900
Managed Lands (acres)	18	45	55
Forests (acres)	332	583	743
Agricultural (acres)	706	1,301	1,743
Karst Areas (acres)	0	0	0
Relocations (number)	102	86	121

Table 3 through Table 6 compares the performance of these variations on project core goals. Overall, the P_{231} variation performs poorly due to the absence of improved, higher-level facilities outside of Dubois County. The upgrades to US 231 for the P_{231} variation in Martin and Daviess counties offer on a very small increase in accessibility and decrease in travel time, compared to higher-level new terrain alignments for the Super-2 and Expressway variations. In response to comments on the DEIS, the column headers referring to alternatives have been made consistent in these four tables.

Appendix A - Transportation Performance Measures provides details about each performance measure, including how they are calculated.

App V - Local Improvements

Table 3 - Performance on Goal 1 - Increase Accessibility to Major Business Markets

Origin-Destination Pair	2045 No-Build Travel Time (Min)	Travel Time Change (Minutes)		
		P Expressway	P Super-2	P_{231}
Jasper - Indianapolis	142.5	-5	-2	-1
Jasper - Chicago	271.5	-5	-2	-1
Jasper -Louisville	103	-3	-2	-2
Jasper - NSA Crane	47.6	-5	-3	-1
NSA Crane - Rockport	90	-15	-9	-8
NSA Crane - Louisville	131.4	-1	0	-1
Bedford - Louisville	87.5	0	0	0
Bedford - Rockport	114.3	-9	-9	-7
French Lick - Indianapolis	141.5	0	0	0
French Lick -Louisville	76.4	0	0	0
French Lick - Rockport	73.1	-4	-3	-3
Total - All Origin-Destination Pairs		-47	-30	-24
Source: Mid-States Corridor Regional Travel Demand Model				

Table 4 - Performance on Goal 1 - Increase Accessibility to Labor Force

Access From2045 No-Build Labor Access within 30 Minute Travel Time (PM Peak)	Changes in Labor Force Access			
	P Expressway	P Super-2	\mathbf{P}_{231}	
Jasper	77,778	8,900	8,700	1,000
Crane	73,535	800	500	100
Washington	88,169	300	300	100
French Lick	64,637	1,000	900	200
Bedford	95,300	600	200	200
Total - All O/D Pairs	11,600	10,600	1,600	
Source: Mid-States Corridor Regional Travel Demand Model				

Table 5 - Performance on Goal 2 - Provide More Efficient Freight/Truck Travel in Southern Indiana

2045 No-Build Annual VHT	Changes in Annual Truck Vehicle Hours		
	P Expressway	P Super-2	P 231
$3,565,800$	$-36,000$	$-7,900$	7,800
Source: Mid-States Corridor Regional Travel Demand Model			

App V - Local Improvements

Table 6 - Performance on Goal 7 - Increase Access to Major Intermodal Centers

Origin-Destination Pair	2045 No-Build Travel Time (Min)	Travel Time Change (Minutes)		
		P Expressway	P Super-2	P_{231}
Jasper - CSX Avon Yard	145.3	-5	-4	-1
Jasper - Senate Ave Yard	140.3	-5	-4	-4
Jasper - Tell City River Port	53.8	-2	-1	-1
Jasper - Port of Indiana (Jeffersonville)	96	-2	-1	-1
Jasper - Louisville Int Airport	101.8	-5	-2	-2
Jasper - Indianapolis Int Airport	135	-5	-2	-1
NSA Crane - CSX Avon Yard	101.8	0	0	0
NSA Crane - Senate Ave Yard	96.7	0	0	0
NSA Crane - Tell City Port	97.3	-12	-8	-5
NSA Crane - Port of Indiana (Jeffersonville)	124.5	-1	-1	-1
NSA Crane - Indianapolis Int Airport	91.4	0	0	0
NSA Crane - Louisville Int Airport	130.2	-1	-1	-1
Total - All Origin-Destination Pairs		-38	-24	-17
Source: Mid-States Corridor Regional Travel Demand Model				

While the \mathbf{P}_{231} variation generally has lower costs and impacts, it is a poor performer compared to the expressway and Super-2 variations. This comparative performance includes:

- Increase Accessibility to Major Business Markets. The \mathbf{P}_{231} variation has only 51 percent of the performance of the expressway version and 80 percent of the performance of the Super-2 version.
- Increase Accessibility to Labor Force. The \mathbf{P}_{231} variation has only 14 percent of the performance of the expressway version and 15 percent of the performance of the Super- 2 version.
- Provide More Efficient Freight/Truck Travel in Southern Indiana. The \mathbf{P}_{231} variation has negative performance in this goal. It results in an increase in annual truck VHT of 7,750 hours. By comparison, the expressway variation provides for an annual decrease in truck VHT of 36,000 hours, and the Super-2 variation provides for an annual decrease of truck VHT of 7,900 hours.
- Increase Access to Major Intermodal Centers. The \mathbf{P}_{231} variation has only 47 percent of the performance of the expressway version and 73 percent of the performance of the Super-2 version.

The \mathbf{P}_{231} variation has poor performance on core goals compared to the expressway and Super-2 variations. For one core goal (Truck VHT savings) it has negative performance. Based on this comparative poor performance on all core goals, the \mathbf{P}_{231} variation was removed from consideration.

App V - Local Improvements

Secondary Goal Performance

The \mathbf{P}_{231} variation considered upgrades to significant portions of US 231 in Martin, Daviess and Greene counties. This analysis identified that these improvements would offer significant benefits which would address regional safety needs (a secondary project goal). These improvements would complement the performance of new-terrain alternatives for project safety as well as accessibility goals.

In order to consider these local improvements as part of the Mid-States project, local highway improvements also were identified which could complement Alternatives $\mathrm{B}, \mathrm{C}, \mathrm{M}$ and O . These improvements were evaluated for the local highways identified in Table 1. Section 3 provides the evaluation of the local improvements associated with all five alternatives (B, C, P, M and O). Based upon these evaluations, each alternative was modified to include these local improvements. The final cost, impact and performance evaluation of all alternatives includes these local improvements as part of each alternative.

It must be noted that the local improvements address secondary project goals. As such, their benefits should be viewed as "other desirable outcomes." In addition, these local improvements may be constructed, and offer benefits many years before the full new-terrain alternatives could be programmed and constructed.

Safety and Travel Time Methodology

The safety benefit calculations are documented in the Appendix to this document. Detailed Highway Safety Manual (HSM) analyses were used to estimate safety benefits. These analyses incorporated 18 variables and 13 crash modification factors. Key variables included AADT, lane width, shoulder width, driveway density and curve lengths/radii (if any). The Appendix also documents the travel time savings calculations.

Identification and Evaluation of Individual Components

Locations for proposed local improvements were identified through consultation with INDOT staff and a review of the safety analysis conducted for the Purpose and Need (see Appendix CC - Purpose and
Need, Section 4.1.1). These locations are illustrative. These local improvements will be finalized in Tier 2 NEPA studies.

Section 3 provides the costs, benefits, and impacts of local improvements which are part of each alternative.

3. OTHER LOCAL IMPROVEMENTS

Table $\mathbf{7}$ shows the local improvements and the alternatives in which each are included. Figure $\mathbf{3}$ is a map showing all 18 local improvements. While the local improvements are described as they were evaluated for estimating cost, benefits and impacts, these improvements are illustrative for this Tier 1 analysis and will be further refined as described above.

Tables 8 through 12 show the benefits, costs, and impacts of the full set of local improvements associated with each alternative. These benefits, costs, and impacts are included in the analyses in Chapter $\mathbf{2}$ and Chapter $\mathbf{3}$ of this DEIS, in addition to the benefits, costs and impacts of the new alignment

App V - Local Improvements

Super-2 and expressway variations. For both the Super-2 and expressway variations of each route, their total costs, benefits, and impacts are the sum of those for the mainline new terrain alignments and those for the local improvements which are part of that alternative.

Table 7 - Local Improvements

Local Improvement Number	Associated Route(s)	Existing Highway	Description
1	B, C, M, O, P	US 231	Approximately one mile of an added passing lane from near the Huntingburg Airport to CR 750 S in Dubois County, the primary benefits are safety and localized congestion. Anticipate only a southbound passing lane is necessary. Tier 2 studies would be necessary to determine optimal design.
2	B, C, M, O, P	US 231	Approximately three miles of added passing lanes between Huntingburg and Jasper in Dubois County, primary benefits are safety and localized congestion. Anticipate southbound and northbound passing lanes necessary. Tier 2 studies would be necessary to determine optimal design.
3	B, C, M, O, P	US 231	Approximately one and-a-half miles of added lanes from SR 162 to Indiana Street in Jasper, Dubois County. Primary benefits are safety and localized congestion. Added lane may be limited to shared center turn lanes to facilitate left turns, or combination of added through lanes with access control and/or added turn lanes. Tier 2 studies would be necessary to determine optimal design.
4	M, O, P	US 231	Approximately three miles of access management evaluation in Jasper, Dubois County, from Bartley Street to Common Drive. Primary benefits are safety and localized congestion. Tier 2 studies would be necessary to determine optimal design.
5	C, M, O, P	US 231	Approximately three miles of an added passing lane between Jasper and Haysville, Dubois County, from W 400 N to W 600 N . Primary benefit safety. Anticipate only a northbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
6	M, P	US 231	Approximately three miles of an added passing lane north of the White River near Alfordsville, Martin County, between CR 22 and CR 162. The primary benefit is safety. Anticipate only a northbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
7	M, P	US 231	Approximately two miles of an added passing lane south of Loogootee, Martin County, between CR 158 and US 50. The primary benefit is safety. Anticipate only a southbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
8	P	US 231	Approximately one mile of an added passing lane north of Loogootee, Martin County, extending from Loogootee and tying into Alternative P. Primary benefit is safety. Anticipate only a northbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.

App V - Local Improvements

Local Improvement Number	Associated Route(s)	Existing Highway	Description
9	P	US 231	Approximately two miles of an added passing lane south of the I-69 interchange, includes Greene and Martin counties. The primary benefit is safety. Anticipate only a southbound passing lane necessary. This would tie into Alternative P. The total length and location would be determined in Tier 2 studies for optimal design.
10	B	SR 56	Approximately two miles of an added passing lane west of Ireland, Dubois County. The primary benefit is safety. Anticipate only a westbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
11	B	SR 257	Approximately two miles of an added passing lane north of the intersection of SR 356 and SR 257, Pike County. The primary benefit is safety. Anticipate only a northbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
12	B	SR 257	Approximately one and-a-half miles of an added passing lane north of the intersection of CR 600 S, Daviess County. The primary benefit is safety. Anticipate only a southbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
13	M	SR 450	Approximately two miles of an added passing lane east of Dover Hill, Martin County. The primary benefit is safety. Anticipate only an eastbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
14	M	SR 450	Approximately one and-a-half miles of an added passing lane west of Bedford, Lawrence County. The primary benefits are safety. Anticipated only a westbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
15	0	SR 56	Approximately two miles of an added passing lane west of intersection of SR 56 and SR 545, Dubois County. The primary benefit is safety. Anticipate only an eastbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
16	0	SR 56	Approximately one mile of an added passing lane between Crystal and Cuzco Road, Dubois County. The primary benefit is safety. Anticipate only an eastbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
17	O	SR 145	Approximately two miles of an added passing lane south of French Lick, Orange County. The primary benefit is safety. Anticipate only a southbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.
18	0	US 150	Approximately one mile of an added passing lane east of West Baden, Orange County. The primary benefit is safety. Anticipate only an eastbound passing lane necessary. Tier 2 studies would be necessary to determine optimal design.

App V - Local Improvements

Figure 3 - Local Improvements

App V - Local Improvements

Table 8 - Costs, Benefits and Impacts of Local Improvements Which Are Part of Alternative B

Measure		Alternative B - Local Improvement Component						
		1	2	3	10	11	12	Total
Benefits	Annual Safety Benefit (dollars)	\$771,000	\$2,158,000	\$1,233,000	\$771,000	\$154,000	\$771,000	\$5,858,000
	Annual Time Savings (hours)	4,700	14,100	7,100	5,600	700	3,300	35,500
Length/Cost	Length (miles)	1.27	3.16	1.50	2.04	1.78	1.66	11.41
	Construction Cost (\$ millions)	\$7.30	\$31.70	\$10.78	\$10.42	\$8.93	\$11.53	\$80.66
Impacts	New Right-of-Way ${ }^{1}$ (acres)	13	20	0	19	20	12	84
	Floodplains ${ }^{2}$ (acres)	5	53	13	0	0	8	79
	Wetlands ${ }^{3}$ (acres)	0.1	12	0.001	0	0.2	0.4	12
	Streams/Rivers ${ }^{4}$ (linear ft)	1,157	3,471	5,938	575	1,547	5,755	18,444
	Historic Site Parcels ${ }^{5}$ (count)	0	0	0	0	0	0	0
	Managed Lands ${ }^{6}$ (acres)	0	1.6	0	0	0	0	2
	Forests ${ }^{7}$ (acres)	1	19	0.1	2	4	1	27
	Agricultural ${ }^{7}$ (acres)	9	10	0.01	15	15	10	61
	Karst Areas ${ }^{8}$ (acres)	0	0	0	0	0	0	0
	Parcels with Potential Relocations (count)	1	4	1	8	9	4	27

${ }^{1}$ Existing ROW layer was created from county parcel data layers and aerial photography. It was subtracted from the design ROW.
${ }^{2}$ IDNR Best Available Layer (06/2020). Acres include both the floodway and the floodplain fringe.
${ }^{3}$ USFWS National Wetland Inventory - Includes all wetland types except "riverine".
${ }^{4}$ USGS National Hydrography Dataset, Local Resolution -- Includes streams and rivers that have been given a classification.
${ }^{5}$ Impacts to parcels with a historic structure. The structure may not occur in the ROW. Data is from the Indiana SHAARD Historic Database and field windshield survey by professional historians.
${ }^{6}$ Managed Lands data is a compilation of layers (04/2020) from IDNR, NRCS, National Forests, GAP Program, land trusts, and local government.
${ }^{7}$ Forest (Deciduous, Evergreen, Mixed, and Wetlands) and Agriculture (Crops, Pasture) layers are subsets of the National Land Cover Dataset 2016. General land cover data classified from 30-meter
${ }^{8}$ IGS layer of sinkhole areas and sinking stream basins.
${ }^{9}$ Potential Relocations are a count of parcels containing one or more structures within 20 feet of the ROW. Isolated outbuildings were not included.

App V - Local Improvements

Table 9 - Costs, Benefits and Impacts of Local Improvements Which Are Part of Alternative C

Measure		Alternative C-Local Improvement Component					
		1	2	3	4	5	Total
Benefits	Annual Safety Benefit (dollars)	\$167,000	\$1,850,000	\$1,079,000	\$1,308,000	\$1,542,000	\$6.396,000
	Annual Time Savings (hours)	4,300	11,900	6,400	0	6,600	29,200
Length/Cost	Length (miles)	1.27	3.16	1.50	3.20	2.46	12
	Construction Cost (\$ millions)	\$7.30	\$31.70	\$10.78	\$1.00	\$19.09	\$69.87
Impacts	New Right-of-Way ${ }^{1}$ (acres)	13	20	0	0	23	56
	Floodplains ${ }^{2}$ (acres)	5	53	13	0	3	75
	Wetlands ${ }^{3}$ (acres)	0.1	12	0.001	0	0	12
	Streams/Rivers ${ }^{4}$ (linear ft)	1,157	3,471	5,938	0	3,980	14,546
	Historic Site Parcels ${ }^{5}$ (count)	0	0	0	7	0	7
	Managed Lands ${ }^{6}$ (acres)	0	1.6	0	0.008	0	2
	Forests ${ }^{7}$ (acres)	1	19	0.1	0.02	4	24
	Agricultural ${ }^{7}$ (acres)	9	10	0.01	0	9	29
	Karst Areas ${ }^{8}$ (acres)	0	0	0	0	0	0
	Parcels with Potential Relocations (count)	1	4	1	0	15	21
${ }^{1}$ Existing ROW layer was created from county parcel data layers and aerial photography. It was subtracted from the design ROW. ${ }^{2}$ IDNR Best Available Layer (06/2020). Acres include both the floodway and the floodplain fringe. ${ }^{3}$ USFWS National Wetland Inventory - Includes all wetland types except "riverine". ${ }^{4}$ USGS National Hydrography Dataset, Local Resolution -- Includes streams and rivers that have been given a classification. ${ }^{5}$ Impacts to parcels with a historic structure. The structure may not occur in the ROW. Data is from the Indiana SHAARD Historic Database and field windshield survey by professional historians. ${ }^{6}$ Managed Lands data is a compilation of layers (04/2020) from IDNR, NRCS, National Forests, GAP Program, land trusts, and local government. ${ }^{8}$ IGS layer of sinkhole areas and sinking stream basins. ${ }^{9}$ Potential Relocations are a count of parcels containing one or more structures within 20 feet of the ROW. Isolated outbuildings were not included.							

App V - Local Improvements

Table 10 - Costs, Benefits and Impacts of Local Improvements Which Are Part of Alternative M

Measure		Alternative M - Local Improvement Component									
		1	2	3	4	5	6	7	13	14	Total
Benefits	Annual Safety Benefit (dollars)	\$617,000	\$1,696,000	\$1,079,000	\$1,263,000	\$1,388,000	\$154,000	\$308,000	\$154,000	\$463,000	\$7,122,000
	Annual Time Savings (hours)	4,200	10,800	6,000	0	5,900	900	1,800	700	2,700	33,000
Length/Cost	Length (miles)	1.27	3.16	1.50	3.20	2.46	2.65	1.13	1.99	1.17	19
	Construction Cost (\$ millions)	\$7.30	\$31.70	\$10.78	\$1.00	\$19.09	\$18.47	\$11.95	\$14.72	\$18.47	\$82.70
Impacts	New Right-of-Way ${ }^{1}$ (acres)	13	20	0	0	23	49	8	39	20	172
	Floodplains ${ }^{2}$ (acres)	5	53	13	0	3	10	6	7	7	106
	Wetlands ${ }^{3}$ (acres)	0.1	12	0.001	0	0	1	0.003	0.2	0	13
	Streams/Rivers ${ }^{4}$ (linear ft)	1,157	3,471	5,938	0	3,980	5,044	1,964	3,049	340	24,943
	Historic Site Parcels ${ }^{5}$ (count)	0	0	0	7	0	0	0	0	0	7
	Managed Lands ${ }^{6}$ (acres)	0	1.6	0	0.008	0	0	0	0	0	2
	Forests ${ }^{7}$ (acres)	1	19	0.1	0.02	4	28	2	23	18	97
	Agricultural ${ }^{7}$ (acres)	9	10	0.01	0	9	17	11	15	2	73
	Karst Areas ${ }^{8}$ (acres)	0	0	0	0	0	0	0	0	12	12
	Parcels with Potential Relocations (count)	1	4	1	0	15	3	2	4	4	34
${ }^{1}$ Existing ROW ${ }^{2}$ IDNR Best Av ${ }^{3}$ USFWS Natio ${ }^{4}$ USGS Nation ${ }^{5}$ Impacts to p ${ }^{6}$ Managed Land ${ }^{7}$ Forest (Decid ${ }^{8}$ IGS layer of ${ }^{9}$ Potential Rel	yer was created from county parcel data able Layer (06/2020). Acres include both I Wetland Inventory - Includes all wetland Hydrography Dataset, Local Resolution -- I els with a historic structure. The structure data is a compilation of layers (04/2020) us, Evergreen, Mixed, and Wetlands) and khole areas and sinking stream basins. ations are a count of parcels containing on	d aerial pho way and the xcept "riverin streams and t occur in the NR, NRCS, Na ure (Crops, P re structures	graphy. It was loodplain fringe ". ivers that have ROW. Data is fr ional Forests, G sture) layers ar within 20 feet of	btracted from een given a clas m the Indiana S P Program, land subsets of Nati the ROW. Isolat	e design ROW. fication. AARD Historic D trusts, and loca nal Land Cover d outbuildings	atabase and fiel government. ataset 2016. G ere not include	windshield su eral land cov	vey by profe data classifi	ional historia from 30-me	r satellite im	ry.

App V - Local Improvements

Table 11 - Costs, Benefits and Impacts of Local Improvements Which Are Part of Alternative \mathbf{O}

Measure		Alternative O-Local Improvement Component									
		1	2	3	4	5	15	16	17	18	Total
Benefits	Annual Safety Benefit (dollars)	\$771,000	\$1,696,000	\$1,079,000	\$1,263,000	\$1,696,000	\$308,000	\$154,000	\$771,000	\$925,000	\$8,663,000
	Annual Time Savings (hours)	4,400	11,400	6,100	0	7,800	2,100	1,000	5,000	5,300	43,100
Length/Cost	Length (miles)	1.27	3.16	1.50	3.20	2.46	1.69	1.07	1.42	1.08	17
	Construction Cost (\$ millions)	\$7.30	\$31.70	\$10.78	\$1.00	\$19.09	\$10.83	\$8.49	\$10.04	\$11.50	\$110.73
Impacts	New Right-of-Way ${ }^{1}$ (acres)	13	20	0	0	23	28	17	7	8	116
	Floodplains ${ }^{2}$ (acres)	5	53	13	0	3	0	10	29	22	136
	Wetlands ${ }^{3}$ (acres)	0.1	12	0.001	0	0	0.05	0.01	0.3	1	13
	Streams/Rivers ${ }^{4}$ (linear ft)	1,157	3,471	5,938	0	3,980	984	3,878	3,134	2,583	25,126
	Historic Site Parcels ${ }^{5}$ (count)	0	0	0	7	0	1	0	0	0	8
	Managed Lands ${ }^{6}$ (acres)	0	1.6	0	0.008	0	0	0	0	0	2
	Forests ${ }^{7}$ (acres)	1	19	0.1	0.02	4	9	8	5	2	50
	Agricultural ${ }^{7}$ (acres)	9	10	0.01	0	9	17	7	5	4	61
	Karst Areas ${ }^{8}$ (acres)	0	0	0	0	0	0	0	0	0.4	0
	Parcels with Potential Relocations (count)	1	4	1	0	15	6	3	1	1	32
${ }^{1}$ Existing ROW ${ }^{2}$ IDNR Best Av ${ }^{3}$ USFWS Natio ${ }^{4}$ USGS Nationa ${ }^{5}$ Impacts to p ${ }^{6}$ Managed Lan ${ }^{7}$ Forest (Decid ${ }^{8}$ IGS layer of s ${ }^{9}$ Potential Rel	yer was created from county parcel data la able Layer ($06 / 2020$). Acres include both th I Wetland Inventory - Includes all wetland Hydrography Dataset, Local Resolution -- Inclu els with a historic structure. The structure data is a compilation of layers $(04 / 2020)$ us, Evergreen, Mixed, and Wetlands) and hole areas and sinking stream basins. ations are a count of parcels containing on	nd aerial pho dway and the except "riveri streams and ot occur in th NR, NRCS, N ture (Crops, ore structure	graphy. It was loodplain fringe ". ivers that have ROW. Data is from ional Forests, G sture) layers ar within 20 feet of	ubtracted from een given a clas m the Indiana S P Program, land subsets of the the ROW. Isola	he design ROW. sification. HAARD Historic trusts, and loca ational Land Co d outbuildings	atabase and field government. er Dataset 2016 ere not include	windshield s General land	rvey by profe over data cla	sional historia ified from 30	s. meter satellit	magery.

App V - Local Improvements

Table 12 - Costs, Benefits and Impacts of Local Improvements Which Are Part of Alternative P

Measure		Alternative P-Local Improvement Component									
		1	2	3	4	5	6	7	8	9	Total
Benefits	Annual Safety Benefit (dollars)	\$617,000	\$1,696,000	\$1,079,000	\$1,263,000	\$1,388,000	\$308,000	\$308,000	\$308,000	\$1,388,000	\$8,355,000
	Annual Time Savings (hours)	3,700	11,300	6,500	0	6,100	1,800	1,700	2,800	10,300	44,200
Length/Cost	Length (miles)	1.27	3.16	1.50	3.20	2.46	2.65	1.13	0.78	1.85	18.01
	Construction Cost (\$ millions)	\$7.30	\$31.70	\$10.78	\$1.00	\$19.09	\$18.47	\$11.95	\$6.38	\$8.69	\$115.36
Impacts	New Right-of-Way ${ }^{1}$ (acres)	13	20	0	0	23	49	8	6	8	127
	Floodplains ${ }^{2}$ (acres)	5	53	13	0	3	10	6	0.002	0	91
	Wetlands ${ }^{3}$ (acres)	0.1	12	0.001	0	0	1	0.003	0	0	13
	Streams/Rivers ${ }^{4}$ (linear ft)	1,157	3,471	5,938	0	3,980	5,044	1,964	1,012	243	22,810
	Historic Site Parcels ${ }^{5}$ (count)	0	0	0	7	0	0	0	0	0	7
	Managed Lands ${ }^{6}$ (acres)	0	1.6	0	0.008	0	0	0	0	0	2
	Forests ${ }^{7}$ (acres)	1	19	0.1	0.02	4	28	2	2	3	59
	Agricultural ${ }^{7}$ (acres)	9	10	0.01	0	9	17	11	7	16	79
	Karst Areas ${ }^{8}$ (acres)	0	0	0	0	0	0	0	0	0	0
	Parcels with Potential Relocations (count)	1	4	1	0	15	3	2	1	1	28
${ }^{1}$ Existing ROW ${ }^{2}$ IDNR Best Av ${ }^{3}$ USFWS Natio ${ }^{4}$ USGS Nationa ${ }^{5}$ Impacts to pa ${ }^{6}$ Managed Lan ${ }^{7}$ Forest (Decid ${ }^{8}$ IGS layer of si ${ }^{9}$ Potential Relo	yer was created from county parcel data la able Layer ($06 / 2020$). Acres include both th I Wetland Inventory - Includes all wetland Hydrography Dataset, Local Resolution -- In els with a historic structure. The structure data is a compilation of layers $(04 / 2020)$ fron us, Evergreen, Mixed, and Wetlands) and khole areas and sinking stream basins. ations are a count of parcels containing on	nd aerial pho dway and the except "riveri streams and ot occur in th NR, NRCS, N Iture (Crops, re structure	graphy. It was loodplain fringe ". ivers that have ROW. Data is fr ional Forests, G sture) layers ar within 20 feet of	ubtracted from een given a clas m the Indiana S Program, land subsets of the the ROW. Isola	he design ROW. ification. HAARD Historic trusts, and loca ational Land Co d outbuildings	atabase and fie government. er Dataset 2016 ere not include	windshield General land	rvey by profe cover data cla	sional historia sified from 30	s. meter satellite	magery.

4. EVALUATION OF LOCAL IMPROVEMENTS - ALL ROUTES

Multiple agency requests asked that an alternative be considered which consisted largely or entirely of improvements to existing highways. This request was made by the following agencies.

- USEPA's Sept. 12, 2019 comment letter suggested that the project "... add passing lanes, increase shoulder widths, add turn lanes and traffic lights at intersections."
- IDNR's March 27, 2020 comment letter stated, "It is strongly recommended that few new highways be created, while existing highways and major roads are enhanced."
- IDEM's September 12, 2019 comment letter stated, "IDEM prefers alternatives that restrict as much of the project as possible to existing road alignments as the best option for avoiding and minimizing impacts to waters."

To consider these comments, an alternative (designated the Upgrade Alternative) was identified which consisted of all 18 local improvements identified in the previous section. A forecast year (2045) traffic assignment was provided for which the Upgrade Alternative was the Build Alternative. Tables 13 through 16 compare the performance of the Upgrade Alternative on the project core goals with the performance of the Super- 2^{2} variations of Alternative B, C, P, M and O. These local improvements are described in Table 7 and depicted in Figure 3.

The performance measures in Tables $\mathbf{3}$ through $\mathbf{6}$ were calculated earlier in the project. Since that time, refinements have been made to Alternative P. Accordingly, the performance measures shown in the following tables do not coincide exactly with those shown in Tables 3 through 6. The bulleted list below compares the performance for the Super-2 facility type for Alternative P in Tables $\mathbf{3}$ through $\mathbf{6}$ with those shown in the following tables. The performance measures shown in Tables $\mathbf{3}$ to $\mathbf{6}$ are retained to document those used to determine that the \mathbf{P}_{231} hybrid alternative would not receive further consideration.

- Increased Accessibility to Major Business Markets. Table 3, 30 minutes. Table 13, 25 minutes.
- Increased Accessibility to Labor Force. Table 4, 10,600 workers. Table 14, 10,400 workers.
- More efficient Truck/Freight Travel - Table 5, 7,900 annual truck hours, Table 15, 8,400 annual truck hours.
- Increased Access to Intermodal Centers - Table 6, 24 minutes, Table 1623 minutes.

[^1]
App V - Local Improvements

Table 13 - Performance on Goal 1 - Increase Accessibility to Major Business Markets

Origin-Destination Pair	2045 No-Build Travel Time (Min)	Travel Time Change (Minutes)					
		Alt. B	Alt. C	Alt. M	Alt. O	Alt. P	Upgrade Alternative
Jasper - Indianapolis	145.3	-1	-1	-1	0	-2	-2
Jasper - Chicago	140.3	-1	-1	-2	0	-2	-2
Jasper -Louisville	53.8	-2	-1	-2	-3	-2	-1
Jasper - NSA Crane	96	-1	-1	-1	-2	-3	-2
NSA Crane - Rockport	101.8	-2	-6	-11	-7	-9	-3
NSA Crane - Louisville	135	-1	0	0	0	0	0
Bedford - Louisville	101.8	0	0	0	0	0	0
Bedford - Rockport	96.7	0	-3	-9	-3	-4	-1
French Lick - Indianapolis	97.3	0	0	0	-1	0	0
French Lick-Louisville	124.5	0	0	0	0	0	0
French Lick - Rockport	91.4	0	-3	-4	-5	-3	0
Total - All Origin-Destination Pairs		-8	-16	-30	-21	-25	-11
Source: Mid-States Corridor Regional Travel Demand Model							

Table 14 - Performance on Goal 1 - Increase Accessibility to Labor Force

Access From	2045 No-Build Labor Force Access within 30 Minute Travel Time (PM Peak)	Added Access to Labor Force (Persons)					
		Alt. B	Alt. C	Alt. M	Alt. 0	Alt. P	Upgrade Alt.
Jasper	77,800	2,100	1,700	7,600	8,400	8,700	600
Crane	73,500	300	0	100	0	500	200
Washington	88,200	12,900	2,000	0	0	300	100
French Lick	64,600	0	800	600	17,000	900	500
Bedford	95,300	0	0	1,900	900	0	200
Total - All O/D Pairs		15,300	4,500	10,200	26,300	10,400	1,600

[^2]Labor Force Access Increases for Alternatives B, C, P, M and O are for the Super- 2 Variations

App V - Local Improvements

Table 15 - Performance on Goal 2 - Provide More Efficient Freight/Truck Travel in Southern Indiana

2045 No- Build Annual VHT	Alternative B	Alternative C	Alternative M	Alternative 0	Alternative P	Upgrade Alternative
$3,565,700$	11,100	$-1,800$	$-7,800$	3,000	$-8,400$	-300
Source: Mid-States Corridor Regional Travel Demand Model						
Negative Numbers Indicate Reductions in Truck VHT (Travel Time Savings) Truck Hour Savings for Alternatives B, C, P, M and O are for the Super-2 Variations						

Table 16 - Performance on Goal 7 - Increase Access to Major Intermodal Centers

Origin-Destination Pair	2045 No-Build Travel Time (Min)	Travel Time Change (Minutes)					
		Alternative B	Alternative C	Alternative M	Alternative 0	Alternative P	Upgrade Alternative
Jasper - CSX Avon Yard	145.3	-1	-1	-1	0	-4	-2
Jasper - Senate Ave Yard	140.3	0	0	-1	0	-4	-2
Jasper - Tell City River Port	53.8	0	0	-2	-2	-1	-1
Jasper - Port of Indiana (Jeffersonville)	96	0	0	-2	-2	-1	-1
Jasper - Louisville Int Airport	101.8	0	0	-2	-2	-2	-1
Jasper - Indianapolis Int Airport	135	-1	0	-1	0	-2	-2
NSA Crane - CSX Avon Yard	101.8	0	0	0	0	0	0
NSA Crane - Senate Ave Yard	96.7	0	0	0	1	0	0
NSA Crane - Tell City Port	97.3	-1	-2	-8	-4	-8	-3
NSA Crane - Port of Indiana (Jeffersonville)	124.5	-1	0	0	0	-1	0
NSA Crane - Indianapolis Int Airport	91.4	0	0	0	0	0	0
NSA Crane - Louisville Int Airport	130.2	0	0	0	0	0	0
Total - All Origin-Destination Pairs		-4	-3	-17	-9	-23	-12
Source: Mid-States Corridor Regional Travel Demand Model Travel Time Changes for Alternatives B, C, P, M and O are for the Super- 2 Variations							

Costs, Impacts and Benefits

The Upgrade Alternative is not a truly low-cost alternative. Its total cost is $\$ 170$ million.
The Upgrade Alternative also has noteworthy impacts. Table 17 compares its costs and impacts with the P_{231} hybrid alternative (see Section 2) considered earlier. The P_{231} Alternative also included significant upgrades to existing highways. Table 17 also includes the comparison provided in Table 2 of the Super-2 and Expressway variations of Alternative P.

The performance of the Upgrade Alternative is poorer than Super-2 alternatives. The following points compare its performance to the three higher-performing Super-2 alternatives (Alternatives M, O and P).

App V - Local Improvements

- Increased accessibility to major business markets - 11 minutes saved, versus 21 to 30 minutes saved for Alternatives M, O and P.
- Increased accessibility to labor force - 1,600 added workers, versus 10,200 to 26,300 added workers for Alternatives M, O and P.
- Annual truck hours saved - 300 truck hours saved, versus 3,000 hours increase to 8,400 hours saved for Alternatives M, O and P.
- Increased access to intermodal centers - 12 minutes saved, versus nine to 23 minutes saved for Alternatives M, O and P .

Based upon its poorer performance on core goals compared to lower-level variations of other alternatives, the Upgrade Alternative was removed from further consideration.

Table 17 - Comparative Impacts of Local Improvement Alternatives with Variations of Alternative \mathbf{P}

Impact	Comparison of Alternative P Variations and Local Improvement Alternative			
	P_{231}	P Super-2	P Expressway	Local Improvements
New Right-of-Way (acres)	1,433	2,105	2,759	297
Floodplains (acres)	150	150	195	174
Wetlands (acres)	40	49	67	15
Streams/Rivers (linear ft)	90,600	123,300	161,900	44,700
Forests (acres)	332	583	743	133
Agricultural (acres)	706	1,301	1,743	170
Karst Areas (acres)	0	0	0	0
Relocations (number)	102	86	121	68
Cost (\$millions)	\$381	\$620	\$901	\$170

App V - Local
Improvements

APPENDIX

Highway Safety Manual 1st Edition, Volume 2, Chapter 10 -- Predictive Method for Rural Tn

Overview

This spreadsheet has been developed to demonstrate the predictive models for rural two-lane highways as contained in the new Highway Safety Manual. The content was developed for training purposes and all users should verify that the answers they obtain with these worksheets correctly represent their target analysis.

The page tabs shown at the bottom of this file represent the various analyses that can be performed using this spreadsheet tool and the HSM predictive methods. A user can evaluate an individual road segment or intersection as well as analyze multiple road segments and intersections. If more than one segment type requires analysis, the user should create a blank worksheet and then copy the contents of the segment worksheet into the blank sheet and name the worksheet accordingly.

The current contents of this spreadsheet include the following:

Worksheet Name

Instructions

Segment 1

Segment 2

Segment Tables

Intersection 1

Intersection 2

Intersection Tables

Contents

Current worksheet displaying overview, summary of spreadsheet worksheets, and description of color coding included in the worksheets.

Analysis for the rural 2-lane segments that uses lookup tables from exhibits included in the worksheet "Segment Tables." The associated HSM worksheets are 1A, 1B, 1C, 1D, and 1E.

Duplicate segment worksheet for additional highway segments.

Includes segment tables used for analysis of HSMprovided crash trends as well as locally-derived crash information. These are HSM Tables 10-3, 10-4, and 10-12. This worksheet also includes tables used for CMF calculations. These tables include Table 10-8, 10-9, and 10-10.

Analysis for the rural 2-lane intersections that uses lookup tables from exhibits included in the worksheet "Intersection Tables." The associated HSM worksheets are 2A, 2B, 2C, 2D, and 2E.

Duplicate intersection worksheet for additional highway segments.

Includes intersection tables used for analysis of HSM-

	provided crash trends as well as locally-derived crash information. These are HSM Tables 10-5, 10-6, and 10-15. This worksheet also includes tables used for CMF calculations. These tables include Tables 10-13 and 10-14.
Rural 2-lane Site Total	Analysis for site-specific EB analysis using results from the rural 2-lane segment as well as rural 2-lane intersection worksheets. This analysis can be performed if the analyst knows the exact location of historic crashes within the study limits. The associated HSM worksheets are 3A and 3B.
	Analysis for project-specific EB analysis using results from the rural 2-lane segment as well as rural 2-lane intersection worksheets. This analysis can be performed if the analyst has historic crash data, but does not know the
exact location within the project limits at	
which the crashes occurred. The associated	
HSM worksheets are Worksheets 4A and 4B.	

וo-Lane, Two-Way Roads -- Analysis Spreadsheet Summary

Color Coding in the Worksheets

The worksheets include three specific color options to help users identify locations where input data is required. In some cases, the shaded cells require the user to input specific numbers. In other cases the input is restricted to a select set of options included in pull-down lists. The respective color coding is as follows:

Color Used \quad Type of Information Required from User

Required input information as identified in the HSM.

Input data required from the user but restricted to options provided in pull-down boxes.

Optional input information that can be used to supplement the analysis if this information is available. This optional input information is reserved for locally-derived crash information. If the analyst elects to use this option so as to improve analysis for local crash distribution trends, each of the Exhibits with the locallyderived input also includes a pull-down box where the analyst should indicate they are using locally derive crash information. The worksheets will then use the local values instead of the HSM default values.

Spreadsheet developed by:
Karen Dixon, Ph.D., P.E.
Oregon State University
School of Civil \& Construction Engineering
220 Owen Hall
Corvallis, OR 97330
Email: karen.dixon@oregonstate.edu
Phone: 541-737-6337

B2 Operational Benefits

Local Improvement	Length	Description	2045 Daily Volumes	Travel Time Savings (Hr)
1	1.27	Southbound Passing - Three	9,000	15.8
2	3.16	North/South passing lane-three	13,000	47.0
3	1.5	Additional lanes - Four-lane	15,500	23.7
10	2	Westbound passing lane	8,200	18.8
11	2	Northbound Pasing Lane Three-1	1,000	2.3
12	1.5	Southbound Passing - Three	6,000	11.0
Daily Travel Time Savings (Hrs)				119
Annual Travel Time Savings (Hrs)				35,582
Annual Operational Cost Savings				\$711,636

Annual Travel
Time Savings
(Hr)
4,748
14,085
7,104
5,644
688
3,312

C2 Operational Benefits

Local Improvement	Length	Description	2045 Daily Volumes	Travel Time Savings (Hr)
1	1.27	Southbound Passing - Three	8,200	14.4
2	3.16	North/South passing lane-three	11,000	39.7
3	1.5	Additional lanes - Four-lane	14,000	21.4
5	2.5	Norhbound Passing Lane	8,000	22.0
Daily Travel Time Savings (Hrs)				98
Annual Travel Time Savings (Hrs)				29,259
Annal Operational Cost Savings				$\$ 585,170$

Annual Travel Time Savings
(Hr)
4,326
11,918
6,417
6,597

M2 Operational Benefits

Local Improvement	Length	Description	2045 Daily Volumes	Travel Time Savings (Hr)
1	1.27	Southbound Passing - Three	8,000	14.1
2	3.16	North/South passing lane-three	10,000	36.1
3	1.5	Additional lanes - Four-lane	13,000	19.9
5	2.5	Northbound Passing Lane	7,100	19.5
6	3	Westbound passing lane	1,000	3.1
7	2	Southbound Passing Lane	2,700	6.1
13	2	Eastbound Passing Lane	1,000	2.3
14	1.5	Westbound passing lane	4,400	8.9
Daily Travel Time Savings (Hrs)				
Annual Travel Time Savings (Hrs)				
Annual Operational Cost Savings				

Annual Travel Time Savings
(Hr)
4,221
10,835
5,958
5,855
927
1,825
701
2,671

02 Operational Benefits

Local Improvement	Length	Description	2045 Daily Volumes	Travel Time Savings (Hr)
1	1.27	Southbound Passing - Three	8,300	14.6
2	3.16	North/South passing lane-three	10,500	37.9
3	1.5	Additional lanes - Four-lane	13,400	20.5
5	2.5	Northbound Passing Lane	9,500	26.1
15	3	Eastbound passing lane	3,000	6.9
16	2	Eastbound passing lane	2,400	3.3
17	2	Southbound Passing Lane	7,300	16.7
18	1.5	Eastbound passing lane	11,500	17.5
Daily Travel Time Savings (Hrs)				
Annual Travel Time Savings (Hrs)				
Annual Operational Cost Savings				

Annual Travel Time Savings
(Hr)
4,379
11,376
6,142
7,834
2,065
997
5,025
5,257

P2 Operational Benefits

Local Improvement	Length	Description	2045 Daily Volumes	Travel Time Savings (Hr)
1	1.27	Southbound Passing - Three	8,000	12.3
2	3.16	North/South passing lane-three	10,400	37.5
3	1.5	Additional lanes - Four-lane	14,000	21.7
5	2.5	Northbound Passing Lane	7,400	20.3
6	3	Northbound Pasing Lane	1,900	5.8
7	2	Southbound Passing Lane	2,500	5.7
8	1	Northbound Passing Lane	6,700	9.4
9	2	Southbound Passing Lane	13,600	34.3
Daily Travel Time Savings (Hrs)				147
Annual Travel Time Savings (Hrs)				44,100
Annual Operational Cost Savings				\$882,000

Annual Travel Time Savings
(Hr)
3,700
11,250
6,500
6,100
1,750
1,700
2,825
10,275

All Local Improvements Operations Benefits

Local Improvement	Length	Description	2045 Daily Volumes	Travel Time Savings (Hr)
1	1.27	Southbound Passing - Three	11,000	19.3
2	3.16	North/South passing lane-three	15,000	54.2
3	1.5	Additional lanes - Four-lane	18,000	27.5
5	2.5	Northbound Passing Lane	11,400	31.3
6	3	Northbound Pasing Lane	7,900	24.4
7	2	Southbound Passing Lane	7,700	17.4
8	1	Northbound Passing Lane	8,200	11.6
9	2	Southbound Passing Lane	11,000	27.8
10	2	Westbound Passing Northbound Passing Lane Southbound Passing Lane Eastbound passing lane Westbound Pasing Lane Eastbound passing lane Eastbound passing lane Southbound Passing - Three Eastbound passing lane	10,300	23.6
11	2		3,600	8.3
12	1.5		3,700	6.8
13	2		1,000	2.3
14	1.5		4,400	8.9
15	2		4,600	10.6
16	1		4,900	6.8
17	2		7,400	17.0
18	1		11,600	17.7
Daily Travel Time Savings (Hrs)				315
Annual Travel Time Savings (Hrs)				94,619
Annual Operational Cost Savings				\$1,892,375

Annual Travel Time Savings
(Hr)
5,804
16,252
8,250
9,401
7,326
5,205
3,471
8,329
7,090
2,478
2,042
701
2,671
3,166
2,036
5,094
5,303

B2 Safety Benefits

C2 Safety Benefits

					Before			
Option	Length	Improvements		2045 Daily Volumes	$\begin{array}{\|c\|} \hline \text { Crashes/Ye } \\ \hline \end{array}$ ar	Fatal Injury	Incapacitati ng Injury	Non-Incapacitating Injury
1	1.27	Southbound Passing - Three Lane		8,200	4	0.03	0.58	0.36
2	3.16	North/South passing lane-three		11,000	12	0.08	1.74	1.08
3	1.5	Additional lanes - Four-lane		14,000	7	0.05	1.02	0.63
4	3.2	Access Management		28,400	58	0.41	8.41	5.22
5	2.5	Northbound Passing Lane Three-		8,000	10	0.07	1.45	0.90
Total					91	0.64	13.20	8.19
		Scenario	Fatal Cost	Incapacitatin g Cost	$\begin{array}{\|c\|} \hline \text { Non- } \\ \text { Incapacitati } \end{array}$	Possible Injury	PDO Cost	Total
		Before	\$7,195,170	\$8,642,725	\$1,621,620	\$457,184	\$779,688	\$18,696,387
		After	\$5,824,134	\$6,995,859	\$1,312,621	\$370,068	\$679,185	\$15,181,867
				Safety B	enefits			\$3,514,520

M2 Safety Benefits

				Before						After					
Option	Length	Improvements	2045 Daily Volumes	Crashes/Ye ar	Fatal Injury	Incapacitati ng Injury	Non-Incapacitating Injury	Possible Injury	PDO	Crashes/ Year	Fatal Injury	Incapacit ating	$\begin{array}{\|c\|} \hline \text { Non- } \\ \text { Incapacit } \end{array}$	Possible Injury	PDO
1	1.27	Southbound Passing - Three Lane	8,000	4	0.03	0.58	0.36	0.16	2.88	3	0.02	0.34	0.21	0.09	2.16
2	3.16	North/South passing lane-three	10,000	11	0.08	1.60	0.99	0.44	7.92	8	0.04	0.93	0.57	0.26	5.94
3	1.5	Additional lanes - Four-lane	13,000	7	0.05	1.02	0.63	0.28	5.04	5	0.03	0.59	0.37	0.16	3.78
4	3.2	Access Management	26,500	56	0.39	8.12	5.04	2.24	40.32	53	0.3	7.63	4.74	2.11	37.90
5	2.5	Northbound Passing Lane Three-	7100	9	0.06	1.31	0.81	0.36	6.48	6	0.04	0.76	0.47	0.21	4.86
6	3	Northbound Passing Lane Three-La	1000	1	0.01	0.15	0.09	0.04	0.72	1	0.00	0.08	0.05	0.02	0.54
7	2	Southbound Passing - Three Lane	2700	2	0.01	0.29	0.18	0.08	1.44	1	0.01	0.17	0.10	0.05	1.08
13	2	Eastbound passing lane	1000	1	0.01	0.15	0.09	0.04	0.72	1	0.00	0.08	0.05	0.02	0.54
14	1.5	Westbound passing lane	4400	3	0.02	0.44	0.27	0.12	2.16	2	0.01	0.25	0.16	0.07	1.62
Total				94	0.66	13.63	8.46	3.76	67.68	79.48	0.52	10.83	6.72	2.99	58.42

Scenario	Fatal Cost	$\begin{array}{\|c\|} \hline \text { Incapacitatin } \\ \mathrm{g} \text { Cost } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Non- } \\ \text { Incapacitati } \\ \hline \end{array}$	Possible Injury	PDO Cost	Total
Before	\$7,432,373	\$8,927,650	\$1,675,080	\$472,256	\$805,392	\$19,312,751
After	\$5,904,783	\$7,092,733	\$1,330,798	\$375,192	\$695,208	\$15,398,714
Safety Benefits						\$3,914,037

O2 Safety Benefits

				Before						After						Safety Benefit
Option	Length	Improvements	2045 Daily Volumes	Crashes/Ye ar	Fatal Injury	Incapacitati ng Injury	Non-Incapacitating Injury	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Possible } \\ \text { Injury } \end{array} \\ \hline \end{array}$	PDO	Crashes/ Year	Fatal Injury	Incapacit ating	$\begin{gathered} \text { Non- } \\ \text { Incapacit } \end{gathered}$	Possible Injury	PDO	
1	1.27	Southbound Passing - Three Lane	8,300	5	0.04	0.73	0.45	0.20	3.60	4	0.02	0.42	0.26	0.12	2.70	\$424,172
2	3.16	North/South passing lane-three	10,500	11	0.08	1.60	0.99	0.44	7.92	8	0.04	0.93	0.57	0.26	5.94	\$933,179
3	1.5	Additional lanes - Four-lane	13,400	7	0.05	1.02	0.63	0.28	5.04	5	0.03	0.59	0.37	0.16	3.78	\$593,841
4	3.2	Access Management	26,500	56	0.39	8.12	5.04	2.24	40.32	53	0.37	7.63	4.74	2.11	37.90	\$690,328
5	2.5	Northbound Passing Lane Three-	9500	11	0.08	1.60	0.99	0.44	7.92	8	0.04	0.93	0.57	0.26	5.94	\$933,179
15	2	Eastbound passing lane	3000	2	0.01	0.29	0.18	0.08	1.44	1	0.01	0.17	0.10	0.05	1.08	\$169,669
16	1	Eastbound passing lane	2400	1	0.01	0.15	0.09	0.04	0.72	1	0.00	0.08	0.05	0.02	0.54	\$84,834
17	2	Southbound Passing - Three Lane	7300	5	0.04	0.73	0.45	0.20	3.60	4	0.02	0.42	0.26	0.12	2.70	\$424,172
18	1	Eastbound passing lane	11500	6	0.04	0.87	0.54	0.24	4.32	4	0.02	0.50	0.31	0.14	3.24	\$509,007
		Total		104	0.73	15.08	9.36	4.16	74.88	86.52	0.56	11.67	7.24	3.22	63.82	

Scenario	Fatal Cost	Incapacitatin g Cost	$\begin{array}{\|c\|} \hline \text { Non- } \\ \text { Incapacitati } \end{array}$	Possible Injury	PDO Cost	Total
Before	\$8,223,051	\$9,877,400	\$1,853,280	\$522,496	\$891,072	\$21,367,299
After	\$6,363,377	\$7,643,588	\$1,434,154	\$404,332	\$759,468	\$16,604,917
Safety Benefits						\$4,762,382

P2 Safety Benefits

				Before						After						Safety Benefit
Option	Length	Improvements	2045 Daily Volumes	Crashes/Ye ar	Fatal Injury	Incapacitati ng Injury	Non-Incapacitating Injury	$\begin{array}{\|c} \hline \begin{array}{c} \text { Possible } \\ \text { Injury } \end{array} \\ \hline \end{array}$	PDO	Crashes/ Year	Fatal Injury	Incapacit ating	Non- Incapacit	Possible Injury	PDO	
1	1.27	Southbound Passing - Three Lane	8,000	4	0.03	0.58	0.36	0.1	2.8	3	02	0.34	0.21	0.09	2.16	\$339,338
2	3.16	North/South passing lane-three	10,400	11	0.08	1.60	0.99	0.44	7.92	8	0.04	0.93	0.57	0.26	5.9	\$933,179
3	1.5	Additional lanes - Four-lane	14,000	7	0.05	1.02	0.63	0.28	5.04	5	0.03	0.59	0.37	0.16	3.78	\$593,841
4	3.2	Access Management	26,500	56	0.39	8.12	5.04	2.24	40.32	53	0.37	7.63	4.74	2.11	37.90	\$690,328
5	2.5	Northbound Passing Lane Three-	7,400	9	0.06	1.31	0.81	0.36	6.48	6	0.04	0.76	0.47	0.21	4.86	\$763,510
6	3	Northbound Pasing Lane Three-Lar	1,900	2	0.01	0.29	0.18	0.08	1.44	1	0.01	0.17	0.10	0.05	1.08	\$169,669
7	2	Southbound Passing - Three Lane	2,500	2	0.01	0.29	0.18	0.08	1.44	1	0.01	0.17	0.10	0.05	1.08	\$169,669
8	1	Northbound Passing Lane Three-	6,700	2	0.01	0.29	0.18	0.08	1.44	1	0.01	0.17	0.10	0.05	1.08	\$199,669
9	2	Southbound Passing - Three Lane	13,600	9	0.06	1.31	0.81	0.36	6.48	6	0.04	0.76	0.47	0.21	4.86	\$763,510
		Total		102	0.71	14.79	9.18	4.08	73.44	85.11	0.56	11.50	7.14	3.17	62.74	

Scenario	Fatal Cost	$\begin{array}{\|c\|} \hline \text { Incapacitatin } \\ \mathrm{g} \text { Cost } \end{array}$	$\begin{array}{\|c\|} \hline \text { Non- } \\ \text { Incapacitati } \end{array}$	Possible Injury	PDO Cost	Total
Before	\$8,064,916	\$9,687,450	\$1,817,640	\$512,448	\$873,936	\$20,956,390
After	\$6,271,658	\$7,533,417	\$1,413,482	\$398,504	\$746,616	\$16,363,676
Safety Benefits						\$4,592,713

All Local Improvements Safety Benefits

Option	Length	Improvements	2045 Daily Volumes	$\begin{array}{\|c} \hline \begin{array}{c} \text { Crashes/Ye } \\ \text { ar } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Fatal } \\ & \text { Injury } \\ & \hline \end{aligned}$	Incapacitati ng Injury	Non-Incapacitating Injury	Possible Injury	PDO	Crashes/ Year	Fatal Injury	$\begin{array}{\|c} \text { Incapacit } \\ \text { ating } \end{array}$	NonIncapacit	Possible Injury	PDO	Safety Benefit
1	1.27	Southbound Passing - Three Lane	11,000	6	0.04	0.87	0.54	0.24	4.32	4	0.02	0.50	0.31	0.14	3.24	\$509,007
2	3.16	North/South passing lane-three	15,000	15	0.11	2.18	1.35	0.60	10.80	11	0.06	1.26	0.78	0.35	8.10	\$1,272,517
3	1.5	Additional lanes - Four-lane	18,000	9	0.06	1.31	0.81	0.36	6.48	6	0.04	0.76	0.47	0.21	4.86	\$763,510
4	3.2	Access Management	35,700	63	0.44	9.14	5.67	2.52	45.36	60	0.42	8.68	5.39	2.39	43.09	\$647,183
5	2.5	Northbound Passing Lane Three-	11,400	13	0.09	1.89	1.17	0.52	9.36	9	0.05	1.09	0.68	0.30	7.02	\$1,102,848
6	3	Northbound Pasing Lane Three-Lar	7,900	7	0.05	1.02	0.63	0.28	5.04	5	0.03	0.59	0.37	0.16	3.78	\$593,841
7	2	Southbound Passing - Three Lane	7,700	5	0.04	0.73	0.45	0.20	3.60	4	0.02	0.42	0.26	0.12	2.70	\$424,172
8	1	Northbound Passing Lane Three-	8,200	3	0.02	0.44	0.27	0.12	2.16	2	0.01	0.25	0.16	0.07	1.62	\$254,503
9	2	Southbound Passing - Three Lane	11,000	8	0.06	1.16	0.72	0.32	5.76	6	0.03	0.67	0.42	0.19	4.32	\$678,676
10	2	Westbound Passing	10,300	6	0.04	0.87	0.54	0.24	4.32	4	0.02	0.50	0.31	0.14	3.24	\$509,007
11	2	Northbound Passing Lane Three-La	3,600	3	0.02	0.44	0.27	0.12	2.16	2	0.01	0.25	0.16	0.07	1.62	\$254,503
12	1.5	Southbound Passing Lane	3,700	3	0.02	0.44	0.27	0.12	2.16	2	0.01	0.25	0.16	0.07	1.62	\$254,503
13	2	Eastbound passing lane	1,000	1	0.01	0.15	0.09	0.04	0.72	1	0.00	0.08	0.05	0.02	0.54	\$84,834
14	1.5	Westbound Pasing Lane	4,400	3	0.02	0.44	0.27	0.12	2.16	2	0.01	0.25	0.16	0.07	1.62	\$254,503
15	2	Eastbound passing lane	4,600	3	0.02	0.44	0.27	0.12	2.16	2	0.01	0.25	0.16	0.07	1.62	\$254,503
16	1	Eastbound passing lane	4,900	2	0.01	0.29	0.18	0.08	1.44	1	0.01	0.17	0.10	0.05	1.08	\$169,669
17	2	Southbound Passing - Three Lane S	7,400	5	0.04	0.73	0.45	0.20	3.60	4	0.02	0.42	0.26	0.12	2.70	\$424,172
18	1	Eastbound passing lane	11,600	6	0.04	0.87	0.54	0.24	4.32	4	0.02	0.50	0.31	0.14	3.24	\$509,007
		Total		161	1.13	23.35	14.49	6.44	115.92	128.92	0.82	16.92	10.50	4.67	96.01	

Scenario	Fatal Cost	Incapacitatin g Cost	Non- Incapacitati	Possible Injury	PDO Cost	Total
Before	\$12,729,916	\$15,290,975	\$2,869,020	\$808,864	\$1,379,448	\$33,078,223
After	\$9,226,422	\$11,082,633	\$2,079,416	\$586,251	\$1,142,543	\$24,117,263
Safety Benefits						\$8,960,959

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

 Noun To.

Tabbs Afflibed wiwh Crash Modiffation Faccorss

Tabbs Afflibed wiwh Crash Modiffation Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Tablos AAflabad winh Crash Moontration Faccorss

Local Improvement	Length	Improvements	2045 Daily Volumes	Peak Hour Volume	Peak Dr Volume
1	1.27	Southbound Passing - Three Lane Section	11,000	1,320	726
2	3.16	North/South passing lane-three lane section	15,000	1,800	990
3	1.5	Additional lanes - Four-lane section	18,000	2,160	1,188
5	2.5	Northbound Passing Lane Three-Lane	11,400	1,368	752
6	3	Northbound Pasing Lane Three-Lane	7,900	948	521
7	2	Southbound Passing - Three Lane Section	7,700	924	508
8	1	Northbound Passing Lane Three-Lane	8,200	984	541
9	2	Southbound Passing - Three Lane Section	11,000	1,320	726
10	2	Westbound Passing	10,300	1,236	680
11	2	Northbound Passing Lane Three-Lane	3,600	432	238
12	1.5	Southbound Passing - Three Lane Section	3,700	444	244
13	2	Eastbound passing lane	1,000	120	66
14	1.5	Westbound Pasing Lane	4,400	528	290
15	2	Eastbound passing lane	4,600	552	304
16	1	Eastbound passing lane	4,900	588	323
17	2	Southbound Passing - Three Lane Section	7,400	888	488
18	1	Eastbound passing lane	11,600	1,392	766

am Influence Length	Upstream ATS (mph)	within the Passing Lane Zone	Downstream Influence Area (mph)	Before Travel Time $(\mathbf{s e c})$	After Travel Time (sec)	Delay Reduction (sec)	Time Savings (sec/veh)	Daily TT Savings (hrs)
1.7	51	56.1	53.55	89.65	81.50	3.36	11.51	2.32
1.7	51	56.1	53.55	223.06	202.78	3.36	23.64	6.50
1.7	40	44	42	135.00	122.73	0.00	12.27	4.05
1.7	55	60.5	57.75	163.64	148.76	3.12	17.99	3.76
1.7	57	62.7	59.85	189.47	172.25	3.01	20.23	2.93
1.7	56	61.6	58.8	128.57	116.88	3.06	14.75	2.08
1.7	54	59.4	56.7	66.67	60.61	3.17	9.24	1.39
1.7	50	55	52.5	144.00	130.91	3.43	16.52	3.33
1.7	55	60.5	57.75	130.91	119.01	3.12	15.02	2.84
1.7	55	60.5	57.75	130.91	119.01	3.12	15.02	0.99
1.7	55	60.5	57.75	98.18	89.26	3.12	12.04	0.82
1.7	54	59.4	56.7	133.33	121.21	3.17	15.30	0.28
1.7	50	55	52.5	108.00	98.18	3.43	13.25	1.07
1.7	55	60.5	57.75	130.91	119.01	3.12	15.02	1.27
1.7	55	60.5	57.75	65.45	59.50	3.12	9.07	0.81
1.7	55	60.5	57.75	130.91	119.01	3.12	15.02	2.04
1.7	50	55	52.5	72.00	65.45	3.43	9.97	2.12

[^0]: ${ }^{1}$ This hybrid alternative combines the new terrain alignment of Alternative P in Dubois County with upgrades of portions of US 231 in Martin and Daviess counties. In the FEIS, Alternative R was considered in response to comments on the DEIS. Alternative R is an upgrade of the entirely of US 231 between I-64 and I-69. See FEIS
 Section 2.5.1 - Reconsideration of Alternative R.

[^1]: ${ }^{2}$ The expressway variations typically have much higher performance than Super-2 variations. This comparison is provided to Super-2 variations to compare the Upgrade Alternative to less expensive, lower-level variation with lower performance than expressway variations.

[^2]: Source: Mid-States Corridor Regional Travel Demand Model
 "Labor Force" is defined as residents at least 16 years of age.

